Google Billing Extension

Contents
Extension’s Features
Setup
Quick Start Guide
Initialization
Querying Purchases
One-time Purchases
Consumables
Subscriptions
Verification
Functions
GPBilling_Init
GPBilling_ConnectToStore
GPBilling_IsStoreConnected
GPBilling_AddProduct
GPBilling_AddSubscription
GPBilling_QueryProducts
GPBilling_QuerySubscriptions
GPBilling_QueryPurchases [DEPRECATED]
GPBIlling_QueryPurchasesAsync [NEW]
GPBilling_PurchaseProduct
GPBilling_PurchaseSubscription
GPBilling_AcknowledgePurchase
GPBilling_ConsumeProduct
GPBilling_Sku_GetDescription

N oo AW

12
14
16

18
18
19
21
22
24
26
29
32
36
40
44
48
51
54

GPBilling_Sku_GetFreeTrialPeriod
GPBilling_Sku_GetlconUrl
GPBilling_Sku_GetIntroductoryPrice
GPBilling_Sku_GetIntroductoryPriceAmountMicros
GPBilling_Sku_GetIntroductoryPriceCycles
GPBilling_Sku_GetIntroductoryPricePeriod
GPBilling_Sku_GetOriginalJson
GPBilling_Sku_GetOriginalPrice
GPBilling_Sku_GetOriginalPriceAmountMicros
GPBilling_Sku_GetPrice
GPBilling_Sku_GetPriceAmountMicros
GPBilling_Sku_GetPriceCurrencyCode
GPBilling_Sku_GetSubscriptionPeriod
GPBiIlling_Sku_GetTitle
GPBilling_Sku_GetType
GPBilling_Purchase_GetState
GPBilling_Purchase_GetSignature
GPBilling_Purchase_VerifySignature
GPBilling_Purchase_GetOriginaldson

Constants
Event Type
Error Type
Purchase State

SKU Type

55
56
58
60
62
64
66
67
69
71
72
74
76
78
79
81
83
84
86
87
87
87
87
87

Extension’s Features

Connect to the Google Store

Query products/subscription/purchase information
Purchase products/subscriptions
Acknowledge/Consume purchases

Verify purchases using signature/own server (Verification)

Setup

The Google Play Billing extension requires no setup apart from filling out the correct public key
to your application in the Game Options -> Android -> Packaging -> Google Licensing
Public Key field; make sure this information is correct and you should be good to go.

Quick Start Guide

This section aims to deliver an easy and simple set of examples that should help you get
started with your first project using the Google Play Billing extension. One thing to note before
starting is that some function calls trigger async responses, which can be listened to using the
ASYNC IN-APP PURCHASE event.

Initialization
The first thing to look for when creating a Google Play Billing project in GameMaker Studio
using this extension is initializing your API.

// Before executing any other code we first need to initialize the Google Play
// Billing API. This initialization is done with a simple function call and

// requires no arguments.

GPBilling Init();

// After initialization you can connect to the store, this is necessary since
// we cannot buy/query products if we are not connected to our account. This
// function will trigger an ASYNC IN-APP PURCHASE event (similar to all the
// functions that trigger events in this extension).

var _error = GPBilling ConnectToStore();

// The return value of this function can be ‘gpb error unknown’ or
// ‘gpb_no_error’ (these are constants, for more info see: Error Type)
if (_error == gpb_error unknown)
{
// At this point we know there was an error while requesting for
// connection, and we can act accordingly.

// The connection request was successful and we should look for a
// callback response from it.

Given that the code above didn’t produce any errors, we can listen to the callback response
using the Async In-App Purchase event, following the code below:

switch (async load[?"id"])

{
// @triggered by GPBilling ConnectToStore ()
case gpb store connect:

// At this point we have just finished connecting to the store so
// we can now add products/subscriptions. Only the ones that are
// added locally can be purchased and queried.

GPBilling AddProduct (“single time purchase”);

GPBilling AddProduct (“consumable purchase”);

GPBilling AddSubscription (“subscription purchase”);

// After adding the products you want to use locally. you can now
// query their information. This is required if you want to use
// any of the GPBilling Sku * functions.

GPBilling QueryProducts();

GPBilling QuerySubscriptions();

break;

// @triggered by GPBilling ConnectToStore ()
case gpb_store connect failed:

// At this point we have failed to connect to the store.
// You can now add logic to handle the problem.
break;

Querying Purchases

Another important step while developing an app with IAP is to track what was purchased and
what was not. Maybe you want to make sure the user cannot buy something that was already
bought or you want to check if a user has bought a given subscription. We can do this using
the following steps:

1. Connect to the store (see: Initialization)
2. Add the products/subscriptions locally (see: Initialization)
3. Use the GPBiIlling_QueryPurchases() function with a given sku type (Sku Type)

Let’s jump into the fully documented code sample below:

// After the first two steps are complete we can now use the extension
// functionality to help with the process.

// Query an array of purchases of type "inapp" (consumables/permanent)
var queryJson = GPBilling QueryPurchases (gpb purchase skutype inapp);

// If there is an error during the query the function returns an empty string
// so we need to check for that.
if (querydson != %)
{
// Now we can proceed. We will use json parse since it generates
// structs/arrays that are easier to handle and don’t need manual
// disposal.
var queryData = json parse (queryJson);

// The query data now has a ‘success’ variable that holds a boolean

// depending on whether or not the query was successful.

if (queryData.success)

{
// We can now access the ‘purchases’ array that stores a list of
// all the products owned by the user.
var purchasesArray = queryData.purchases;

// Loop through the array of purchases

var purchase, purchasesCount = array length(purchasesArray);
for (var 1 = 0; 1 < purchasesCount; i++)

{

purchase = purchasesArrayl[i];

// Now we have access to all the purchase data that can be
// stored for later use; please refer to the previous
// version’s documentation for more details.

//

// purchase.orderId

// purchase.packageName
// purchase.productId

// purchase.purchaseTime
// purchase.purchaseState

// purchase.autoRenewing

// purchase.acknowledged

//

else

// Data query was not successful at this point so there is an
// extra property available - ‘responseCode’ - that will store one
// of the Google Play Store error codes (Error Type).

Follow the same procedure for subscriptions replacing gpb_purchase skutype inapp With the
other constant available to the APl gpb purchase skutype subs, the data collected on both
runs will give you all the information you need on owned items.

One-time Purchases

There are three types of IAPs you might use in your project; this section will deal with one-time
purchases. These purchases are bought only once and cannot be bought anymore after that.
The life-cycle of this type of purchase is:

Connect to the store (see: Initialization)

Add the products/subscriptions locally (see: Initialization)

Purchasing the product

Waiting for a receipt callback & verifying the purchase (see: Verification)
Acknowledging the purchase

Waiting for a acknowledge callback

Rewarding the user with the corresponding item.

N oM

These steps are essential for correct use of the API. For a quick set-up let’s look into the fully
documented code sample provided below (the first two steps can be checked above).

Step 3 - For this specific case we are using a button click to trigger the purchase; you can use
whatever method you see fit.

// Early exit if the operating system is not Android

// This check will prevent the IAP code to run if we are running the project
// in an unsupported operating system.

if (os_type != os android) exit;

// Early exit if there is no connection to the store.
if (!GPBilling IsStoreConnected()) exit;

// Proceed to purchase the product

// We need to make sure we added the product locally using the correct SKU
// identifier so this product is available for purchase.

var _error = GPBilling PurchaseProduct (“single time purchase”);

// The function above returns an error code that can be checked against the
// gbp error * constants.
switch(_error)
{
case gpb_error not initialised:
// The API has not been initialised yet.
break;
case gpb error no sku:
// There are no SKUs in the product/subscription list.
break;
case gpb_error selected sku list empty:
// There are no SKUs in the product list (although there might be
// in the subscription list).
break;
case gpb no_error:
// There were no errors, we should expect a response callback
break;

Step 4/5 - Given that the code above didn’t produce any errors we can listen to the callback
response using the Async In-App Purchase event, following the code below:

switch (async load[?"id"])
{

// @triggered by GPBilling PurchaseProduct ()
case gpb_iap receipt:

// At this point we just finished a purchase and are now
// triggering a receipt event.

// We look at the async load for a 'response json', since it is a
// json string we can use ‘json parse’ on it.
var responseData = Jjson parse(async load[?"response json"]);

// There is a ‘success’ variable that holds a boolean depending on
// whether or not the purchase was successful.
if (responseData.success)
{
var purchases = responseData.purchases;
var purchasesCount = array length (purchases);

// We will loop through everything because there could be
// more than one purchase being triggered.
for(var i = 0; i < purchasesCount; i++)

{

var purchase = purchases[i];
var sku = purchase.productld;

// At this point we will check if this SKU corresponds
// to the purchase we just made, ideally this should
// be done using a more automated approach.

if (sku != “single time purchase”) continue;

var token = purchase.purchaseToken;

// At this point we should now verify the purchase
// there is a section on that later (Verification)
if (_ yourVerificationMethod)

{

// At this point the purchase was verified and
// we should now proceed to acknowledgement
var err = GPBilling AcknowledgePurchase (token);

// We will store the purchase token so we can
// check the acknowledgement event, this is not
// the ideal method to use.
global.singleTimePurchaseToken = token;

// The return value from the function call above
// is either: gpb error unknown or gpb no error.

}

break;

}

Step 6/7 - Given that the code above didn’t produce any errors we can listen to the callback
response using the Async In-App Purchase event and reward the user accordingly, following
the code below:

switch (async load[? "id"])
{

case gpb acknowledge purchase response:

// Convert JSON string into data struct
var responseData = json parse(async_load[?"response json"]);

// Check if tokens match
if (responseData.purchaseToken == global.singleTimePurchaseToken)
{
// At this point we know the event refers to this in-app
// purchase. Now we need to check if there are any errors.
if (responseData.responseCode == gpb no_error)
{
// At this point the purchase acknowledgement
// succeeded. We can now REWARD THE USER.

// At this point the purchase acknowledgement
// failed. We can act accordingly.

break;

Consumables

One other type of IAPs is the consumables; this section will deal with them. These purchases
can be bought multiple times. The life-cycle of this type of purchase is mostly similar to the
previous section (One-time Purchases) with just a couple changes:

Connect to the store (see: Initialization)

Add the products/subscriptions locally (see: Initialization)

Purchasing the product (see: One-time Purchases)

Waiting for a receipt callback & verifying the purchase (see: Verification)
Consume the purchase

Waiting for a Consume callback

Rewarding the user with the corresponding item.

No oo ks~

These steps are essential for a correct use of the API. For a quick set up let’s look into the fully
documented code sample provided below.

Step 5 - For this specific case we will start the guide mid-way through since you can follow the
previous section to understand how it works. The main changes occur after the purchase has
been verified.

// At this point we should now verify the purchase
// there is a section on that later (Verification)
if (_ yourVerificationMethod)
{
// At this point the purchase was verified and
// we should now proceed to consume it.
var err = GPBilling ConsumePurchase (token);

// We will store the purchase token so we can
// check the consumption event (this is not
// the ideal method to use).
global.consumablePurchaseToken = token;

// The return value from the function call above
// 1is either: gpb error unknown or gpb no error.

Step 6/7 - Given that the code above didn’t produce any errors we can listen to the callback
response using the Async In-App Purchase event and reward the user accordingly, following
the code below:

switch(async load[? "id"])
{

case gpb consume purchase response:

// Convert JSON string into data struct
var responseData = json parse(async_ load[?"response Jjson"]);

// Check if tokens match
if (responseData.purchaseToken == global.consumablePurchaseToken)
{
// At this point we know the event refers to this in-app
// purchase. Now we need to check if the purchase
// consumption was successful (there is a ‘success’
// property we can use for that purpose).
if (responseData.success)
{
// At this point the purchase was successfully
// consumed succeeded. We can now REWARD THE USER.

// At this point the purchase failed to be consumed.
// We can act accordingly.

}

break;

Subscriptions

The last type of IAP you might encounter are subscriptions; this section will deal with how to
purchase subscriptions. These purchases are bought and remain unavailable until the
subscription period ends . The life-cycle of this type of purchase is:

Connect to the store (see: Initialization)

Add the products/subscriptions locally (see: Initialization)

Purchasing the subscription

Waiting for a receipt callback & verifying the purchase (see: Verification)
Acknowledging the purchased (see: One-time Purchases)

Waiting for a acknowledge callback (see: One-time Purchases)

Rewarding the user with the corresponding item (see: One-time Purchases)

NOoOOo~LNM =

These steps are essential for correct use of the API. For a quick set up let’s look into the fully
documented code sample provided below.

Step 3 - For this guide the only change occurs during purchase and we shall cover the changes
from previous purchase.

// Early exit if the operating system is not Android

// This check will prevent the IAP code to run if we are running the project
// in an unsupported operating system.

if (os_type != os android) exit;

// Early exit if there is no connection to the store.
if (!GPBilling IsStoreConnected()) exit;

// Proceed to purchase the product

// We need to make sure we added the product locally using the correct SKU
// identifier so this product is available for purchase.

var _error = GPBilling PurchaseSubscription (“subscription purchase”);

// The function above returns also a error code that can be checked against
// the gbp error * constants
switch(_error)
{
case gpb_error not initialised:
// The API has not been initialised yet.
break;
case gpb error no sku:
// There are no SKUs in the product/subscription list.
break;
case gpb_error selected sku list empty:
// There are no SKUs in the product list (although there might be
// in the subscription list).
break;
case gpb no_error:
// There were no errors, we should expect a response callback
break;

The main difference is in the ‘GPBilling PurchaseSubscription’ function; this function must
be used when we want to purchase an item that is a subscription.

Verification

The verification step in a purchase life-cycle is very important and might be the entry point for
spoofing your game. We can have two approaches for that; firstly, a more academic
implementation that is more vulnerable and not recommended for enterprise standards, and
secondly a more advanced implementation that requires the use of a personal server.

[SIMPLE VERSION]

For the simple version (the one used in the demo) we can use the purchaseToken to verify the
purchase following the code below:

// This is purely an example. Verifying in this manner is less secure and
// prone to spoofing. Ideally, developers will verify all IAPs - consumable,
// subs and entitlements - using their own server.

// The first step is to get the signature for the given token
var signature = GPBilling Purchase GetSignature (token);

// Then we query the Jjson information from the purchase
var purchaseJsonStr = GPBilling Purchase GetOriginalJson (token);

// Then we call the function ‘GPBilling Purchase VerifySignature’ that will
// take both previously queried values and verifies the signature
if (GPBilling Purchase VerifySignature (purchaseJsonStr, signature))
{
// At this point the purchase was verified and we should now proceed to
// acknowledge or consume it.

}

As you can see the main problem with this approach is that we are passing the signature and a
plain json file with purchase information around and that is not a good idea.

[ADVANCED VERSION]

For the advanced version a complete “How To” will not be explained since it would be
necessary to build your own server and implementations may vary depending on your project.

1. You will need to implement a server capable of handling http requests

2. Use google auth protocol API to contact Google Store and perform verification.

3. Then from the client side (GameMaker Studio) you can create an http_get request
building your own url and querying the server for verification.

This is implemented in the demo project but is commented out, but you can go in and test it if
you need to. To debug the provided IAP verification server follow these simple steps:

1. make sure you have node-js installed on your system (installation)

https://nodejs.org/en/

extract the "nodejs-verification-server.zip” into a folder of your liking (desktop)
using a command prompt navigate to the “nodejs-verification-server” folder

use the command npm install (to install the dependencies)

follow the instructions in the file private/credentials.js to create your API access key.
use the command npm start (to start the server)

2L ol S A

Now follow these next steps on the client side (GameMaker Studio project):

1. Go to the Async IAP Event inside Obj_GooglePlayBilling and un-comment the code
block that is there.

2. Replace the address value with your local machine IP address (you can check that
using ipconfig in your command prompt window). An example for the address we can
use is “192.168.1.129”.

Ethernet adapter Ethernet 2:

: Home

Subnet N .
Default Gateway .

3. You should now go to the Game Options -> Android -> Permissions -> Inject to
Android Application Tag, and add the following code there:

android:usesCleartextTraffic="true"

4. Running the example project and buying the subscription will validate the subscription
successfully and pop up the async message box.

NOTE: This is a demo implementation of a dedicated server to verify your purchases. The
included server is able to check both subscriptions and in-app purchases (consumables &
single-time) and should give you an idea of how google API interaction should be handled.

Functions

GPBilling_Init

Changes

This function will not be called automatically anymore and must be manually called before any
other Billing API functions.

Description

This function will initialize the Google Play Billing API.

Syntax
GPBilling Init();

Returns

N/A

Example
N/A

GPBilling_ConnectToStore

Description

This function will attempt to connect the Google Play Billing API with the Play store. When you
call this function, it will return one the constants listed below to inform you of the status of the
connection attempt. This function must be called before calling any other IAP functions and the
return status should be gpb_no_error. This does not, however, mean that the Store is available,
only that the connection attempt has been successful. Before you can successfully define, query
or purchase any products, you must ensure that the connection is valid

To check the availability of the Play Store, the function will also trigger one of two callbacks in
the Asynchronous IAP Event (when the initial returned status is gpb_no_error). In this event,
the async_load DS map will have the following constants returned for the “id” key:

Constant Actual Description
Value
gpb_store_connect 2005 The API has connected to the

Google Play store.

gpb_store_connect_failed 2006 The API has failed to connect
to the Google Play store.

Syntax
GPBilling ConnectToStore();
Returns
Constant
Constant Actual Description
Value
gpb_error_unknown -1 There was an unknown error
preventing the Billing API
from creating a connection
request.
gpb_no_error 0 The Billing API has created a

connection request correctly.

Extended Example

In this extended example, we first send an API request to connect to the store in some event.
This would normally be done in the Create Event of a dedicated controller object that is one of
the first things created in your game:

global.IAP_Enabled = false;

var _init = GPBilling_ConnectToStore();

if _init == gpb_error_unknown
{
show_debug_message(“ERROR - Billing API Has Not Connected!”);
alarm[@] = room_speed * 10;

}

Note that if the connection request has failed, then we can —for example - call an alarm, where
we can call this same code again to test for store connection periodically.

Assuming the API has correctly requested a store connection, it will trigger an Asynchronous IAP
Event where you can check to see if the APl has successfully connected to the Google Play store
or not:

var _eventId = async_load[? "id"];
switch (_eventId)
{
case gpb_store_connect:
// Store has connected so here you would generally add the products
global.IAP_Enabled = true;
GPBilling_AddProduct(global.IAP_PurchaseID[@]);
GPBilling_ AddSubscription(global.IAP_PurchaseID[1]);
// Etc...
break;
case gpb_store_connect_failed:
// Store has failed to connect, so try again periodically
alarm[@] = room_speed * 10;
break;

In the above example, if the store connection fails, you'll see we call an alarm event, setting it to
count down 10 seconds. In this event we can then try to initialise the store once more using the
same code that we have in the Create Event, shown above.

GPBilling_IsStoreConnected

Description

This function will check to see if the Google Play Billing API currently has a connection to the
Google Play store. The function will return true if it is and false if it is not. Note that if there is
no connection, you should not permit any further Google Play Billing API function calls and you

could also disable or hide any purchase options for the user in your game Ul until connection has
been re-established.

In general, you should always call this function and check connectivity before doing any
interactions with the Billing API.

Syntax

GPBilling_IsStoreConnected();

Returns
Boolean
Example
if mouse_check_button_pressed(mb_left) &&
{
if instance_position(mouse_x, mouse_y, id)
{
if GPBilling_IsStoreConnected() && global.IAP_Enabled == true
{
GPBilling_PurchaseProduct(global.IAP_PurchaseID[0]);
}
else
{
global.IAP_Enabled == false;
alarm[@] = room_speed * 10;
}
}

GPBilling_AddProduct

Description
This function can be used to add a consumable product to the internal product list for purchase.

You supply the Product ID (as a string, the same as the product ID on the Google Play Console for
the game), and the function will return one of the constants listed below.

For subscription products, you should be using the function GPBilling AddSubscription().

Note, there is no difference between a consumable and a non-consumable product as far as the
APl is concerned. So, for non-consumable IAPs — like a “no ads” IAP, for example — you simply
don’t call the GPBilling ConsumeProduct() function on it. However, non-consumables should
still be acknowledged using the GPBilling_ AcknowledgePurchase() function when purchased.

Syntax
GPBilling AddProduct(product_id);

Argument Description Data Type
product_id The product ID (SKU) of String
the IAP product being
added.
Returns
Constant
Constant Actual Description
Value
gpb_error_unknown -1 This error indicates that the

product being added is not
unique (ie: the product ID
has already been added to the
internal product list).

gpb_no_error 0 The product was successfully
added to the internal product
list.

Cont.../

GPBilling_ AddProduct Cont.../

Example

The following code is being called from the Asynchronous IAP Event when it has been triggered
by the function GPBilling ConnectToStore().

var _eventId = async_load[? "id"];
switch (_eventId)
{
case gpb_store_connect:
GPBilling_ AddProduct(global.IAP_PurchaseID[0]);
GPBilling AddSubscription(global.IAP_PurchaseID[1]);
GPBilling QueryProducts();
break;

GPBilling_AddSubscription

Description

This function can be used to add a subscription product to the internal product list for purchase.
You supply the Product ID (as a string, the same as the product ID on the Google Play console for
the game), and the function will return one of the constants listed below.

For consumable products, you should be using the function GPBilling AddProduct().

Syntax

GPBilling AddSubscription(product_id);

Argument Description Data Type
product_id The product ID (SKU) of String
the IAP product being
added.
Returns
Constant
Constant Actual Description
Value
gpb_error_unknown -1 This error indicates that the

product being added is not
unique (i.e.: the product ID
has already been added to the
internal product list).

gpb_no_error (4] The product was successfully
added to the internal product
list.

Example

The following code is being called from the Asynchronous IAP Event when it has been triggered
by the function GPBilling ConnectToStore().

var _eventId = async_load[? “id”];
switch (_eventId)
{
case gpb_store_connect:
GPBilling AddProduct(global.IAP_PurchaseID[0]);
GPBilling AddSubscription(global.IAP_PurchaseID[1]);
GPBilling QueryProducts();
break;

GPBilling_QueryProducts

Descri

ion

This function can be used to query the state of any consumable products (for subscriptions,
please use the function GPBilling_ QuerySubscriptions()). This function will generate an
Asynchronous IAP Event where the async_load DS map “id” key holds the constant
gpb_product_data_response, as well as the key “json_response”. This key contains a JSON
object string, which — when decoded using json_decode() — will contain DS map. This map will
have the key “success” - which will be true if the query has been successfully processed, and
false otherwise — as well as the key “skuDetails” (only if “success” is true). The “skuDetails”
key will, in turn, hold a DS list ID where each entry into the list contains a DS map ID with the
details for each of the activated IAP products.

The DS map for each individual product will contain the following keys:

e “skuDetailsToken” — This is a unique token created by Google for the details request.

e “productld” — The product ID (SKU, a string) as listed on the Google Play console for the
game.

o “type” —The IAP type for the product. Will be one of the following constants:

Constant Actual Description
Value

gpb_purchase_skutype_inapp “inapp” | This constant indicates that
the product is a consumable
purchase.

gpb_purchase_skutype_subs “subs” | This constant indicates that
the product is a
subscription purchase.

e “price” — Returns formatted price of the item (a string), including its currency sign. The
price does not include tax.

e “price_amount_micros” — Returns the price in micro-units (an integer), where 1,000,000
micro-units equals one unit of the currency. For example, if the price is “€7.99”, then the
price in micros is “7990000". This value represents the localised and rounded price for a
particular currency.

e “price_currency_code” — Returns the ISO 4217 currency code for the price and original
price (a string). For example, if the price is specified in British pounds sterling, then the
code returned would be “GBP”.

e “title” — Returns the title of the product (a string) as defined in the Google Play console.
e “description” — Returns the product description (a string) as defined in the Google Play

console.

NOTE: You should NOT call this function at the same time as the equivalent subscription query, as
this may cause the Google API to error. Instead, call one function, and then in the Asynchronous
IAP Event callback, call the other function if you need to.

Syntax
GPBilling QueryProducts();

Returns
N/A

Extended Example

The following code is being called from the Asynchronous IAP Event when it has been triggered
by the function GPBilling ConnectToStore().

var _eventId = async_load[? “id”];
switch (_eventId)
{
case gpb_store_connect:
GPBilling_ AddProduct(global.IAP_PurchaseID[0]);
GPBilling_ AddProduct(global.IAP_PurchaseID[1]);
GPBilling QueryProducts();
break;

https://www.xe.com/iso4217.php

The query products function will then trigger another call to the Asynchronous IAP Event, which
can be parsed by adding another case to the switch, this time checking the async_load key “id”
for the constant gpb_product_data_response. Something like this:

case gpb_product_data_response:
var _json =
var _map = json_decode(_json);

if _map[? “success”] == true

{
var
for

_plist =
(var 1 =
{

var _pmap = _plist[| i];

var _num = 0;

while(_pmap[? “productId”] !=

{

++_num;

}
global.IAP_ProductData[_num, 0] =
global.IAP_ProductData[_num, 1] =
global.IAP_ProductData[_num, 2] =
}

GPBilling_QuerySubscriptions();

}
ds_map_destroy(_map);
break;

_map[? “skuDetails”];
0; i < ds_list_size(_

async_load[? “response_json”];

plist); ++i;)

global.IAP_PurchaseID[_num])

_pmap[? “price”];
_pmap[? “title”];
_pmap[? “description®];

Note that after parsing the returned product data, we then call the equivalent query function for
subscriptions, and then when that triggers another asynchronous callback we’d call the function
GPBilling QueryPurchases() to check for any purchases that haven’t been consumed.

GPBilling_QuerySubscriptions

Descri

ion

This function can be used to query the state of any subscription products (for consumables,
please use the function GPBilling QueryProducts()). This function will generate an
Asynchronous IAP Event where the async_load DS map “id” key holds the constant
gpb_subscription_data_response, as well as the key “json_response”. This key contains a
JSON object string, which — when decoded using json_decode() — will contain DS map. This
map will have the key “success” - which will be true if the query has been successfully
processed, and false otherwise — as well as the key “skuDetails” (only if “success” is true). The
“skuDetails” key will, in turn, hold a DS list ID where each entry into the list contains a DS map ID
with the details for each of the activated IAP products.

The DS map for each individual product will contain the following keys:

e “skuDetailsToken” — This is a unique token created by Google for the details request.

e “productld” — The subscription product ID (SKU, a string) as listed on the Google Play
console for the game.

o “type” —The IAP type for the product. Will be one of the following constants:

Constant Actual Description
Value

gpb_purchase_skutype_inapp “inapp” | This constant indicates that
the product is a consumable
purchase.

gpb_purchase_skutype_subs “subs” | This constant indicates that
the product is a
subscription purchase.

e “price” — Returns formatted price of the subscription (a string), including its currency
sign. The price does not include tax.

e “price_amount_micros” — Returns the price in micro-units (an integer), where 1,000,000
micro-units equals one unit of the currency. For example, if the price is “€7.99”, then the
price in micros is “7990000". This value represents the localized, rounded price for a
particular currency.

e “price_currency_code” — Returns the ISO 4217 currency code for the price and original
price (a string). For example, if the price is specified in British pounds sterling, then the
code returned would be “GBP”.

e “title” — Returns the title of the subscription product (a string) as defined in the Google
Play console.

e “description” — Returns the subscription product description (a string) as defined in the
Google Play console.

NOTE: You should NOT call this function at the same time as the equivalent products query, as
this may cause the Google API to error. Instead, call one function, and then in the Asynchronous
IAP Event callback, call the other function if you need to.

Syntax
GPBilling QuerySubscriptions();

Returns

N/A

Extended Example

The following code is being called from the Asynchronous IAP Event when it has been triggered

by the function GPBilling ConnectToStore().

var _eventId = async_load[? “id”];
switch (_eventId)
{
case gpb_store_connect:
GPBilling AddSubscription(global.IAP_PurchaseID[0]);
GPBilling AddSubscription(global.IAP_PurchaseID[1]);
GPBilling QuerySubscriptions();
break;

https://www.xe.com/iso4217.php

The query subscriptions function will then trigger another call to the Asynchronous IAP Event,
which can be parsed by adding another case to the switch, this time checking the async_load
key “id” for the constant gpb_subscription_data_response, something like this:

case gpb_subscription_data_response:
var _json = async_load[? “response_json”];
var _map = json_decode(_json);

if _map[? “success”] == true
{
var _plist = _map[? “skuDetails”];
for (var i = 0; i < ds_list_size(_plist); ++i;)
{

var _pmap = _plist[]| i];

var _num = 0;

while(_pmap[? “productId”] != global.IAP_PurchaseID[_num])
{

++_num;

¥
global.IAP_PurchaseData[_num, @] = _pmap[? “price”];

global.IAP_PurchaseData[_num, 1] = _pmap[? “title”];
global.IAP_PurchaseData[_num, 2] = _pmap[? “description”];

}
GPBilling_QueryPurchases(gpb_purchase_skutype_inapp);

}
ds_map_destroy(_map);

break;

Note that after parsing the returned subscription data, we then call the function
GPBilling QueryPurchases() to check for any purchases that haven’t been consumed. If you
haven’t already queried consumable products, then you should probably do that first, then in
the corresponding Asynchronous IAP Event callback, you’d check the purchase status.

GPBilling_QueryPurchases [DEPRECATED]

Descri

ion

This function is used for querying the purchase state of the different products available for your
game. This function should always be called before permitting any in-app purchases, preferable
near the startup of the game itself. The function takes one of the following constants as the
“type” argument:

Constant Actual Description
Value
gpb_purchase_skutype_inapp “inapp” This constant indicates that

you are querying the purchase
state of consumable products.

gpb_purchase_skutype_subs “subs” | This constant indicates that
you are querying the purchase
state of subscription
products.

Unlike some of the other Billing functions, this one does not generate a callback event, but will
instead immediately return a JSON string which can be decoded using the json_decode()
function. The initial JSON top-level DS map will have the following keys:

® “success” — This will be either true or false depending on whether the purchase query
succeeded or not.

If “success” is false, then there will be an additional key:

e ‘“responseCode” — This is an integer value that corresponds to one of the Google Play
Store response codes listed here. Note that if a purchase has been cancelled, you’ll get
“success: false” and “responseCode:1”, for “USER_CANCELLED”.

If “success” is true, then the additional key will be:

e “purchases” —This is a DS list ID, where each entry in the list corresponds to a DS map
for an individual purchase.

When the “purchases” key exists, this can then be looped through (as shown in the extended
example below) to get the individual DS maps with the product and purchase information. Each
purchase map will contain the following keys:

e “orderld” - Returns a unique order identifier for the transaction (a string). This identifier
corresponds to the Google payments order ID.

https://developer.android.com/reference/com/android/billingclient/api/BillingClient.BillingResponseCode

o “packageName” - Returns the application package from which the purchase originated
(a string).

Cont.../

GPBilling QueryPurchases Cont.../

e “productld” - Returns the product ID (SKU, a string).

e “purchaseTime” - Returns the time the product was purchased (an integer). This is in
milliseconds since the epoch (Jan 1, 1970).

e “purchaseState” - Returns the state of purchase (an integer). Possible values are:

= 0-Un-Specified State
= 1—Purchased

= 2 -—Pending

o “purchaseToken” - Returns a token that uniquely identifies a purchase for a given item
and user pair (a string). This should be used for any server verification.

e “autoRenewing” - Indicates whether the subscription renews automatically (boolean,
will always be false for non-subscription purchases).

e “acknowledged” - The acknowledgement state of the in-app product. Possible (integer)
values are:

= 0-Yetto be acknowledged

= 1-Acknowledged

Purchases that have been made but not consumed will have a “purchaseState” of 1 for
purchased, while purchases that are in progress but not yet resolved will have a state of 2 for
pending.

Keep in mind that any NON-consumable purchases will also have the purchased state (1), as the
Google Billing API makes no distinction between consumable and non-consumable and it’s up to
you to decide when and if a purchase is consumed. However, all purchases must be
acknowledged within 2 days of purchase, even if they are not being consumed. This is done
automatically when a consumable is used, however for non-consumables this must be done
using the function GPBilling AcknowledgePurchase(). If you do not acknowledge a purchase
within 2 days, it will be refunded.

Syntax
GPBilling QueryPurchases(type);

Argument Description Data Type
type The type of product to be Constant (see the
queried. description above)
Returns

String (JSON)

Exten Exampl

For this example, we would first want to connect to the store, then add products and then query
the product status, before checking the purchase state of each product. So, for example, we’d
have a Create Event like this:

global.IAP_Enabled = false;

var _init = GPBilling_ConnectToStore();

if _init == gpb_error_unknown
{
show_debug_message(“ERROR - Billing API Has Not Connected!”);
alarm[@] = room_speed * 10,

}

Assuming the API has correctly requested a store connection, it will trigger an Asynchronous IAP
Event where you can check to see if the API has successfully connected to the Google Play store
or not, and then add each of the products that you want to be available to the user, and then
qguery the product details:

var _eventId = async_load[? "id"];
switch (_eventId)
{
case gpb_store_connect:
global.IAP_Enabled = true;
GooglePlayBilling AddProduct(global.IAP_PurchaseID[0]);
GooglePlayBilling AddProduct(global.IAP_PurchaseID[1]);
GPBilling QueryProducts();
break;

The query products function will then trigger another Asynchronous IAP event, and we can add
another case to our switch statement where we can check the state of any purchases from
those that we’ve added, and consume or acknowledge any purchased product as required:

case gpb_product_data_response:
if async_load[? “success”] == true
{
var _json = GPBilling_ QueryPurchases();
var _jsonmap = json_decode(_json);

if _jsonmap[? “success”] == true
{
var _list = _jsonmap[? "purchases"];

var _sz = ds_list_size(_list);
for (var i = 0; i < _sz; ++i;)
{
var _map = _list[]| i];
if _map[? “purchaseState”] == 1
{
var _pid = map[? “productId”];
var _token = map[? “purchaseToken”];
var _add = false;
if _pid == global.IAP_PurchaseID[9]
{
GPBilling_ConsumeProduct(_token);
_add = true;
}
else if _pid == global.IAP_PurchaseID[1]
{
if _map[? “acknowledged”] == ©
{
GPBilling_AcknowledgePurchase(_token);
_add = true;
}
}
if _add
{
ds_list_add(global.CurrentTokens, _token);
ds_list_add(global.CurrentProduct, _pid);

}

¥
}

ds_map_destroy(_jsonmap);

}

break;

Note that we store the purchase tokens and product IDs of those products we consume or
acknowledge in global ds lists. This is done so that we can track the purchases correctly when
the consumed or acknowledged response comes back (see the functions
GPBilling AcknowledgePurchase() and GPBilling ConsumeProduct() for more details).

GPBilling_QueryPurchasesAsync [NEW]

Descri

ion

This function replaces GPBilling_QueryPurchases and works in an asynchronous manner. Is used
for querying the purchase state of the different products available for your game. This function
should always be called before permitting any in-app purchases, preferable near the startup of
the game itself. The function takes one of the following constants as the “type” argument:

Constant Actual Description
Value
gpb_purchase_skutype_inapp “inapp” This constant indicates that

you are querying the purchase
state of consumable products.

gpb_purchase_skutype_subs “subs” | This constant indicates that
you are querying the purchase
state of subscription
products.

This function will generate an Asynchronous IAP Event where the async_load DS map “id” key
holds the constant gpb_query_purchase_async, a “sku_type” key that contains the argument
provided during the function call, as well as the key “response_json”. This key contains a JSON
object string, which — when decoded using json_decode() — will contain a DS map. This map
will have the key “success” - which will be true if the query has been successfully processed,
and false otherwise — as well as the key “purchases” (only if “success” is true).

® “success” — This will be either true or false depending on whether the purchase query
succeeded or not.

If “success” is true, then the additional key will be:

® “purchases” —This is a DS list ID, where each entry in the list corresponds to a DS map
for an individual purchase.

When the “purchases” key exists, this can then be looped through (as shown in the extended
example below) to get the individual DS maps with the product and purchase information. Each
purchase map will contain the following keys:

e “orderld” - Returns a unique order identifier for the transaction (a string). This identifier
corresponds to the Google payments order ID.

e “packageName” - Returns the application package from which the purchase originated
(a string).

Cont.../

GPBilling QueryPurchases Cont.../

Syntax

e “productld” - Returns the product ID (SKU, a string).

e “purchaseTime” - Returns the time the product was purchased (an integer). This is in
milliseconds since the epoch (Jan 1, 1970).

e “purchaseState” - Returns the state of purchase (an integer). Possible values are:

= 0-Un-Specified State
= 1-Purchased

= 2-—Pending

e “purchaseToken” - Returns a token that uniquely identifies a purchase for a given item
and user pair (a string). This should be used for any server verification.

e “autoRenewing” - Indicates whether the subscription renews automatically (boolean,
will always be false for non-subscription purchases).

o “acknowledged” - The acknowledgement state of the in-app product. Possible (integer)
values are:

= 0-Yetto be acknowledged

= 1-Acknowledged

Purchases that have been made but not consumed will have a “purchaseState” of 1 for
purchased, while purchases that are in progress but not yet resolved will have a state of 2 for
pending.

Keep in mind that any NON-consumable purchases will also have the purchased state (1), as the
Google Billing API makes no distinction between consumable and non-consumable and it’s up to
you to decide when and if a purchase is consumed. However, all purchases must be
acknowledged within 2 days of purchase, even if they are not being consumed. This is done
automatically when a consumable is used, however for non-consumables this must be done
using the function GPBilling_AcknowledgePurchase(). If you do not acknowledge a purchase
within 2 days, it will be refunded.

GPBilling QueryPurchasesAsync(type);

Argument Description Data Type

type The type of product to be | Constant (see the
queried. description above)

Returns

N/A

Extended Example

For this example, we would first want to connect to the store, then add products and then query
the product status, before checking the purchase state of each product. So, for example, we’d
have a Create Event like this:

global.IAP_Enabled = false;

var _init = GPBilling_ConnectToStore();

if _init == gpb_error_unknown

{
show_debug_message(“ERROR - Billing API Has Not Connected!”);
alarm[@] = room_speed * 10;

Assuming the API has correctly requested a store connection, it will trigger an Asynchronous IAP
Event where you can check to see if the APl has successfully connected to the Google Play store
or not, and then add each of the products that you want to be available to the user, and then
query the product details:

var _eventId = async_load[? "id"];
switch (_eventId)
{
case gpb_store_connect:
global.IAP_Enabled = true;
GooglePlayBilling AddProduct(global.IAP_PurchaseID[@]);
GooglePlayBilling AddProduct(global.IAP_PurchaseID[1]);
GPBilling QueryProducts();
break;

The query products function will then trigger another Asynchronous IAP event, and we can add
another case to our switch statement where we can check the state of any purchases from
those that we’ve added, and consume or acknowledge any purchased product as required:

case gpb_product_data_response:
if async_load[? “success”] == true

Cont.../

GPBilling QueryPurchases Cont.../

{

GPBilling_QueryPurchasesAsync();
}
break;

case gpb_query_purchase_async:

if async_load[? “success”] == true
{
var _json = json_decode(async_load[? “response_json”]);
if _jsonmap[? “success”] == true
{
var _list = _jsonmap[? "purchases"];
for (var i = @; i < ds_list_size(_list); ++i;)
{
var _map = _list[]| i];
if _map[? “purchaseState”] == 1
{

var _pid = _map[? “productId”];

var _token = map[? “purchaseToken”];
var _add = false;

if _pid == global.IAP_PurchaseID[0]

{
GPBilling ConsumeProduct(_token);
_add = true;

}

else if _pid == global.IAP_PurchaseID[1]

{
if _map[? “acknowledged”] == ©
{

GPBilling_AcknowledgePurchase(_token);
_add = true;

}

}

if _add

{
ds_list_add(global.CurrentTokens, _token);
ds_list_add(global.CurrentProduct, _pid);

}

}
}
}
ds_map_destroy(_jsonmap);
}
break;

We store the purchase tokens and product IDs of those products we consume or acknowledge in
global ds lists. This is done so that we can track the purchases correctly when the consumed or
acknowledged response comes back (see the functions GPBilling AcknowledgePurchase()

and GPBilling ConsumeProduct() for more details).

GPBilling_PurchaseProduct

Descri

ion

This function will send a purchase request to the Billing APl and attempt to purchase the product
with the given ID. The ID value should be a string and is the product identifier name on the
Google Play console, for example “buy_100_gold”. The function will return one of the constants
listed below to indicate the initial status of the purchase request, and then an Asynchronous IAP
Event will be triggered with the callback.

The Async IAP Event callback will return the async_load DS map, which will contain an “id” key
with the constant gpb_iap_receipt for a purchase request, as well as the key “response_json”,
which will contain a JSON formatted string with the purchase data. This JSON can then be
decoded using the function json_decode() and parsed to retrieve the different elements of the
purchase data.

The decoded JSON will be a DS map with two keys: “success” — which will be true or false
depending on whether the purchase request was successful — and “purchases” (this will not exist
if the “success” key returns false). The value held in the “purchases” key will be a DS list ID,
where each list entry corresponds to an individual purchase DS map, so you should iterate
through the list and parse the map data from each entry.

The DS map for each individual purchase will contain the following keys:

e ‘“orderld” - Returns a unique order identifier for the transaction (a string). This identifier
corresponds to the Google payments order ID.

e “packageName” - Returns the application package from which the purchase originated
(a string).

e “productld” - Returns the product ID (SKU, a string).

e “purchaseTime” - Returns the time the product was purchased (an integer). This is in
milliseconds since the epoch (Jan 1, 1970).

e “purchaseState” - Returns the state of purchase (an integer). Possible values are:
= 0-Un-Specified State
*= 1-Purchased
= 2-—Pending

e “purchaseToken” - Returns a token that uniquely identifies a purchase for a given item
and user pair (a string). This should be used for any server verification.

e “autoRenewing” - Indicates whether the subscription renews automatically (boolean,
will always be false for non-subscription purchases).

e “acknowledged” - The acknowledgement state of the in-app product. Possible values
are:

= 0-Yetto be acknowledged

= 1-Acknowledged

Keep in mind that any NON-consumable purchases will also have the purchased state (1), as the
Google Billing APl makes no distinction between consumable and non-consumable and it’s up to
you to decide when and if a purchase is consumed. However, all purchases must be
acknowledged within 2 days of purchase, even if they are not being consumed. This is done
automatically when a consumable is used, however for non-consumables this must be done

using the function GPBilling_AcknowledgePurchase(). If you do not acknowledge a purchase
within 2 days, it will be refunded.

Syntax
GPBilling PurchaseProduct(product_id);
Argument Description Data Type
product_id The ID of the product as String
shown on the Google Play
console.
Returns
Constant
Constant Error Description
Code
gpb_error_not_initialised 1 The Billing API has not
been initialised before
calling this function.
gpb_error_no_skus 2 There are no SKUs in the
product list nor the
subscription list.
gpb_error_selected_sku_list_empty 3 You have tried to

purchase a product when
there is no product in
the list (although there

may be subscriptions in
the 1list)

gpb_no_error 0 The Billing API has been
initialised correctly.

Cont.../

GPBilling PurchaseProduct Cont.../

Extended Example

The following code would be used in (for example, but not limited to) a mouse pressed event to
purchase a product:

if GPBilling_StoreIsConnected()

{
var _chk = GPBilling_PurchaseProduct(global.IAP_PurchaseID[0@]);
if _chk != gpb_no_error
{
// Purchase unavailable, add failsafe code if required
}
}

You would then have something like the following code in the IAP Asynchronous Event to deal
with the purchase callback (note that the following code shows a simple purchase verification
scheme, however you should ideally verify the purchase with an http call to your server,
supplying the returned token string, and then consume the purchase when you receive
verification in the Asynchronous HTTP Event):

var _eventId = async_load[? "id"];
switch (eventId)
{
case gpb_iap_receipt:
var _json = async_load[? "response_json"];
var _map = json_decode(response_json);

if _map[? “success”] == true
{
if ds_map_exists(_map, "purchases")
{

var _plist = ds_map_find_value(_map, "purchases");
for (var i = @; i < ds_list_size(purchases); ++i;)

{
var _pmap = _plist[]| i];
var _ptoken = _pmap[? "purchaseToken"];

var _sig = GPBilling_Purchase_GetSignature(_ptoken);

var _pjson = GPBilling Purchase_GetOriginalJson(_ptoken);

if GPBilling_Purchase_VerifySignature(_pjson, _sig)
{
GPBilling_ ConsumeProduct(_ptoken);
ds_list_add(global.CurrentTokens, _ptoken);
ds_list_add(global.CurrentProducts, _pmap[? "productId"]);

}

¥
}
ds_map_destroy(_map);
break;

}
Note that we store the purchase tokens and product IDs of those products we consume or
acknowledge in global ds lists. This is done so that we can track the purchases correctly when
the consumed or acknowledged response comes back (see the functions

GPBilling AcknowledgePurchase() and GPBilling_ ConsumeProduct() for more details).

GPBilling_PurchaseSubscription

Description

This function will send a subscription purchase request to the Billing APl and attempt to
subscribe to the product with the given ID. The ID value should be a string and is the subscription
identifier name on the Google Play console, for example “improved_version”. The function will
return one of the constants listed below to indicate the initial status of the subscription request,
and then an Asynchronous IAP Event will be triggered with the callback.

The Async IAP Event callback will return the async_load DS map, which will contain an “id” key
with the constant gpb_iap_receipt for a purchase request, as well as the key “response_json”,
which will contain a JSON formatted string with the purchase data. This JSON can then be
decoded using the function json_decode() and parsed to retrieve the different elements of the
purchase data.

The decoded JSON will be a DS map with two keys: “success” — which will be true or false
depending on whether the purchase request was successful —and “purchases” (this will not exist
if the “success” key returns false). The value held in the “purchases” key will be a DS list ID,
where each list entry corresponds to an individual purchase DS map, so you should iterate
through the list and parse the map data from each entry.

The DS map for each individual purchase will contain the following keys:

e “orderld” - Returns a unique order identifier for the transaction (a string). This identifier
corresponds to the Google payments order ID.

o “packageName” - Returns the application package from which the purchase originated
(a string).

e “productld” - Returns the subscription ID (SKU, a string).

e “purchaseTime” - Returns the time the subscription was purchased (an integer). This is
in milliseconds since the epoch (Jan 1, 1970).

e “purchaseState” - Returns the state of purchase (an integer). Possible values are:
= 0-Un-Specified State
* 1-Purchased
= 2 —Pending

e “purchaseToken” - Returns a token that uniquely identifies a subscription purchase for a
given item and user pair (a string). This should be used for any server verification.

e “autoRenewing” - Indicates whether the subscription renews automatically (boolean,
will always be false for non-subscription purchases).

e “acknowledged” - The acknowledgement state of the subscription. Possible values are:

= 0-Yetto be acknowledged

= 1-Acknowledged

Keep in mind that all subscription purchases must be acknowledged within 2 days of purchase,
using the function GPBilling_AcknowledgePurchase(). If you do not acknowledge a purchase
within 2 days, it will be refunded. Also note that after the initial purchase, the subscription will
be renewed automatically by Google, and all you have to do is query the subscription state each
time the game starts to unlock or block any additional content as required.

IMPORTANT! Setting up and using subscriptions requires an external server to be able to
communicate with your app and with the Google Play servers for verification and other purposes.
This is outside of the scope of this documentation and instead we refer you to the following
documents:

o Google Developer Docs: Add Subscription-Specific Features
o le Devel r Docs: Verify A Purch n A Server

Syntax
GPBilling PurchaseSubscription(product_id);

Argument Description Data Type
product_id The ID of the product as String
shown on the Google Play
console.

https://developer.android.com/google/play/billing/billing_subscriptions
https://developer.android.com/google/play/billing/billing_library_overview#Verify-purchase

Returns
Constant

Constant Error Description
Code
gpb_error_not_initialised 1 The Billing API has not
been initialised before
calling this function.

gpb_error_no_skus 2 There are no SKUs in the
product list or
subscription list.

gpb_error_selected_sku_list_empty 3 You have tried to
purchase a subscription
when there is no
subscription in the list
(although there may be
products in the list)

gpb_no_error (%] The Billing API has been
initialised correctly.

Extended Example

The following code would be used in (for example, but not limited to) a mouse pressed event to
purchase a product:

if GPBilling_StoreIsConnected()

{
var _chk = GPBilling_ PurchaseSubscription(global.IAP_PurchaseID[@]);
if _chk != gpb_no_error
{
// Purchase unavailable, add failsafe code if required
}
}

You would then have something like the following code in the IAP Asynchronous Event to deal
with the purchase callback (note that the following code shows a simple purchase verification
scheme, however you should ideally verify the purchase with an http call to your server,
supplying the returned token string, and then consume the purchase only when you receive
verification in the Asynchronous HTTP Event):

var _eventId = async_load[? "id"];
switch (eventId)
{
case gpb_iap_receipt:
var _json = async_load[? "response_json"];
var _map = json_decode(response_json);

if _map[? “success”] == true
{
if ds_map_exists(_map, "purchases")
{
var _plist = ds_map_find_value(_map, "purchases");
for (var 1 = 0; i < ds_list_size(purchases); ++i;)
{
var _pmap = _plist[| i];
var _ptoken = _pmap[? "purchaseToken"];

var _sig = GPBilling_Purchase_GetSignature(_ptoken);
ds_list_add(global.CurrentTokens, _ptoken);
ds_list_addglobal.CurrentProduct, _pmap[? “productId”]);
// SERVER VERIFICATION CODE HERE

// Here you would send the token and signature to
// your servers for verification with the Google

// Play API and then return the result, which would
// then be received in an Asynchronous HTTP event.
// Once received, the subscription can then

// be acknowledged, and content/bonuses etc...

// can be unlocked in your game

}
¥
}
ds_map_destroy(_map);
break;

}

Note that we store the purchase tokens and product IDs of those products we consume or
acknowledge in global ds lists. This is done so that we can track the purchases correctly when
the consumed or acknowledged response comes back (see the functions
GPBilling AcknowledgePurchase() and GPBilling ConsumeProduct() for more details).

GPBilling_AcknowledgePurchase

Changes

The “response_json” apart from the “responseCode” also has the corresponding
“purchaseToken” information.

Description

This function will acknowledge a purchase or subscription. When you receive notification that a
purchase has been made, it needs to be acknowledged with the Google servers within 2 days
otherwise it is refunded. This is done automatically for consumable purchases when you call the
function GPBilling ConsumeProduct(), but for non-consumable and subscriptions, you must
call this function to let Google know the purchase has been received correctly.

On calling the function initially, it will return one of the constants listed below to inform you of
the request status, and if this is gpb_no_error then an Asynchronous IAP Event will be triggered
where the async_load DS map will have the key “id” which will correspond to the extension
constant gpb_acknowledge_purchase_response. Additionally, the map will have the key
“response_json” which will be a JSON string that can be converted into a DS map using the
json_decode() function.

The decoded JSON will be a DS map which will have a key “responseCode”, which can be
checked before proceeding to deal with the acknowledgement response and also a reference to
the purchase token (under the key “purchaseToken”). This key will have one of the following
integer values:

-3 —The request has reached the maximum timeout before Google Play responds
-2 — Requested feature is not supported by Play Store on the current device.

-1 - The Play Store service is not connected currently

0 —Success

1 — User has cancelled the action

2 — Network connection is down

4 — Requested product is not available for purchase

6 — Fatal error during the API action

7 — Failure to purchase since item is already owned

8 — Failure to consume since item is not owned

Syntax

GPBilling AcknowledgePurchase(purchase_token);

Argument Description Data Type

purchase_token The wunique string token String
for the purchase being

acknowledged.
Returns
Constant
Constant Actual Description
Value
gpb_error_unknown -1 There was an unknown error
preventing the Billing API
from creating an
acknowledgment request.
gpb_no_error (%] The Billing API has created
an acknowledgment request
correctly.
Example

This example shows how you’d deal with the callback in the Asynchronous IAP event for an
acknowledged product (for an example of when the GPBilling_ AcknowledgePurchase()
function should be called, see the Extended Example for the function
GPBilling PurchaseSubscription()):

var _eventId = async_load[? "id"];
switch (eventId)
{
case gpb_acknowledge_purchase_response:
var _map = json_decode(async_load[? “response_json”]);
var _num = -1;
if map[? “responseCode”] == 0
{
var _sz = ds_list_size(global.CurrentProducts);
for (var i = @; i < _sz; ++i;)

{
if global.CurrentProducts[| i] == global.IAP_ProductID[@]
{
global.NoAds = true;
_num = 1i;
break;
}

// Add further checks for other products here...

¥
if _num > -1
{
ds_list_delete(global.CurrentProducts, _num);
ds_list_delete(global.CurrentTokens, _num);

¥
}

else

{

// Parse the other response codes here
// and react appropriately
}

ds_map_destroy(_map);

break;

GPBilling_ConsumeProduct

Changes

The “response_json” apart from the “responseCode” also has the corresponding
“purchaseToken” information.

Description

This function will consume a purchase. When you receive notification that a purchase has been
made, it needs to be consumed or acknowledged with the Google servers within 2 days
otherwise it is refunded. Consumable purchases are acknowledged automatically when you call
this function, but for non-consumable and subscription purchases, see the function

GPBilling AcknowledgePurchase().

On calling the function initially, it will return one of the constants listed below to inform you of
the request status, and if this is gpb_no_error then an Asynchronous IAP Event will be triggered
where the async_load DS map will have the key “id” which will correspond to the extension
constant gpb_product_consume_response. Additionally, the map will have the key
“response_json” which will be a JSON string that can be converted into a DS map using the
json_decode() function.

The decoded JSON will be a DS map which will have either the key “responseCode” (if there is an
error) or the key “purchaseToken”, which will be the purchase token string of the consumed
product and also a reference to the purchase token (under the key “purchaseToken”).

If you have the “responseCode” key, then it can be checked for one of the following integer

values:
e -3 —The request has reached the maximum timeout before Google Play responds
e -2 —Requested feature is not supported by Play Store on the current device.
e -1-The Play Store service is not connected currently
® (0-—Success
® 1 - User has cancelled the action
e 2 — Network connection is down
e 4 —Requested product is not available for purchase
® 6 — Fatal error during the APl action
® 7 —Failure to purchase since item is already owned
e 8- Failure to consume since item is not owned
Syntax

GPBilling_ConsumeProduct(purchase_token);

Argument Description Data Type

purchase_token The wunique string token String
for the purchase being

acknowledged.
Returns
Constant
Constant Actual Description
Value
gpb_error_unknown -1 There was an unknown error
preventing the Billing API
from creating a consume
request.
gpb_no_error (%] The Billing API has created a
consume request correctly.
Example

This example shows how you’d deal with the callback in the Asynchronous IAP event for a
consumed product (for an example of when the GPBilling ConsumeProduct() function
should be called, see the Extended Example for the function GPBilling PurchaseProduct()):

var _eventId = async_load[? "id"];
switch (eventId)
{
case gpb_product_consume_response:
var _map = json_decode(async_load[? “response_json”]);

var _num = -1;
if ds_map_exists(_map, “purchaseToken’)
{
for (var i = @; i < ds_list_size(global.CurrentTokens); ++i;)
{
if _map[? “purchaseToken”] == global.CurrentTokens[| i]
{
if global.CurrentProducts[| i] == global.IAP_ProductID[@]
{
global.Gold += 500;
_num = i;
break;
}
// Check any other products here...
}
}
if _num > -1
{

ds_list_delete(global.CurrentProducts, _num);
ds_list_delete(global.CurrentTokens, _num);

}

}

else
{
// Parse the error response codes here
// and react appropriately
}
ds_map_destroy(_map);
break;

GPBilling_Sku_GetDescription

Description

This function will return the descriptive text as defined on the Google Play Developer Console for
the given SKU (product ID). You supply the product ID as a string, and the function will return a
string with the description. Note that this function requires you to have called
GPBilling QueryProducts() or GPBilling_QuerySubscriptions() first, but once those
have returned their respective Async callbacks, this function can be used anywhere in your game
code to retrieve the required information.

Syntax
GPBilling_ Sku_GetDescription(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[Q]);

var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0@]);
var _price = GPBilling_ Sku_GetPrice(global.IAP_PurchaseID[@]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

GPBilling_Sku_GetFreeTrialPeriod

Description

This function will return the Trial Period as defined on the Google Play Developer Console for the
given SKU (product ID). You supply the product ID as a string, and the function will return a string
in 1ISO 8601 format, for example “P7D” which would equate to seven days. Note that this
function requires you to have called GPBilling QueryProducts() or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.

IMPORTANT! This function is only valid for subscriptions which have a trial period
configured.

Syntax
GPBilling Sku_GetFreeTrialPeriod(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
N/A
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_ Sku_GetDescription(global.IAP_PurchaseID[0]);

var _period = GPBilling Sku_GetFreeTrialPeriod(global.IAP_PurchaseID[0]);
var _days = string_digits(_period);

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, “Trial Period: “ + _days + “ days”);

https://en.wikipedia.org/wiki/ISO_8601

GPBilling_Sku_GetlconUrl

Descri

ion

This function will return the URL for the icon of the given SKU (product ID) as created on the
Google Play Developer Console. You supply the product ID as a string, and the function will
return a string with the URL. You can then use the sprite_add() function to retrieve this image
(which will trigger an Asynchronous Image Loaded Event) and then display it in your game.

Note that this function requires you to have called GPBilling QueryProducts() or

GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required

information.

GPBilling Sku_GetIconUrl(sku);

Returns

Argument Description Data Type

sku The unique SKU ID of the String
product.

String

Extended Example

In this example, we first call the function to get the URL of the icon for a product (probably in an
Asynchronous IAP event, after querying the product details):

var _url = GPBilling Sku_GetIconUrl(global.IAP_PurchaseID[0@]);
iap_sprite = sprite_add(_url, o, false, false, 0, 0);

This will trigger an Asynchronous Image Loaded event where you can then store the returned
image for drawing:

if ds_map_find_value(async_load, "id") == iap_sprite
{
if ds_map_find_value(async_load, "status") >= 0
{

sprite_index = iap_sprite;

GPBilling_Sku_GetIntroductoryPrice

Description

This function will return the introductory price as defined on the Google Play Developer Console
for the given SKU (product ID). You supply the product ID as a string, and the function will return
a formatted string with the price that includes the currency sign, for example “€3.99”. Note that
this function requires you to have («called GPBilling_QueryProducts or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.

IMPORTANT! This function is only valid for subscriptions which have an introductory
period configured.

Syntax
GPBilling Sku_GetIntroductoryPrice(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_ Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling Sku_GetIntroductoryPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

GPBilling_Sku_GetlIntroductoryPriceAmountMicros

Description

This function will return the introductory price as defined on the Google Play Developer Console
for the given SKU (product ID) in micros, where 1,000,000 micros equals one unit of the
currency. You supply the product ID as a string, and the function will return an integer value for
the price in micros, for example 7990000 (which would be 7.99 in currency). Note that this
function requires you to have called GPBilling QueryProducts() or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.

IMPORTANT! This function is only valid for subscriptions which have an introductory
period configured.

Syntax
GPBilling Sku_GetIntroductoryPriceAmountMicros(sku);
Argument Description Data Type
sku The unique SKU ID of the String

product.

Returns
Integer

Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[9]);
var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);
var _m = GPBilling_Sku_GetIntroductoryPriceAmountMicros(global.IAP_PurchaseID[0]);
var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[@]);
var _val = string(_m / 1000000);
var _symbol = “;
switch (_c)

{

case “GBP”: _symbol = “£”; break;

case “JPY”: _symbol = “¥”; break;

case “EUR”: _symbol = “€”; break;

}
draw_set_halign(fa_center);
draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);
draw_text(x, y + 64, _symbol + _val);

GPBilling_Sku_GetIntroductoryPriceCycles

Description

This function will return the introductory price cycles as defined on the Google Play Developer
Console for the given SKU (product ID). You supply the product ID as a string, and the function
will return a string of the value for the number of billing cycles that the user will pay the
introductory price for, for example “3”. Note that this function requires you to have called
GPBilling QueryProducts() or GPBilling QuerySubscriptions() first, but once those
have returned their respective Async callbacks, this function can be used anywhere in your game
code to retrieve the required information.

IMPORTANT! This function is only valid for subscriptions which have an introductory
period configured.

Syntax
GPBilling_Sku_GetIntroductoryPriceCycles(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[9]);

var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetIntroductoryPrice(global.IAP_PurchaseID[®@]);

var _cycles = GPBilling_Sku_GetIntroductoryPriceCycles(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price)

draw_text(x, y + 80, “for “ + _cycles + “ months”);

GPBilling_Sku_GetIntroductoryPricePeriod

Description
This function will return the introductory price period as defined on the Google Play Developer
Console for the given SKU (product ID). You supply the product ID as a string, and the function
will return a string in ISO 8601 format, for example “P7D” would equate to seven days. Note that
this function requires you to have («called GPBilling_QueryProducts or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.
IMPORTANT! This function is only valid for subscriptions which have an introductory
period configured.
Syntax
GPBilling Sku_GetIntroductoryPricePeriod(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_ Sku_GetDescription(global.IAP_PurchaseID[0]);

var _period = GPBilling_ Sku_GetIntroductoryPricePeriod(global.IAP_PurchaseID[9]);
var _days = string_digits(_period);

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, “Offer Lasts For “ + _days + “ days!”);

https://en.wikipedia.org/wiki/ISO_8601

GPBilling_Sku_GetOriginallson

Description

This function will return the original JSON corresponding to the given SKU (product ID),
containing all the details about the product. You supply the product ID as a string, and the
function will return a JSON string that can be decoded into a DS map using the json_decode()
function. The map contents will correspond to the details listed in the Google Billing
documentation (see here for more information). Note that this function requires you to have
called GPBilling_QueryProducts() or GPBilling_QuerySubscriptions() first, but once
those have returned their respective Async callbacks, this function can be used anywhere in your
game code to retrieve the required information.

Syntax
GPBilling_Sku_GetOriginalJson(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code can be called after querying a product to retrieve all the information about it
without calling the individual SKU functions:

var _json = GPBilling_ Sku_GetOriginalJson(global.IAP_PurchaseID[@]);
var _map = json_decode(_json);

global.IAP_PurchaseData[0, 0] _map[? “price”];

global.IAP_PurchaseData[0, 1] _map[? “title”];

global.IAP_PurchaseData[0, 2] _map[? “decription”];
ds_map_destroy(_map);

https://developer.android.com/reference/com/android/billingclient/api/SkuDetails.html

GPBilling_Sku_GetOriginalPrice

Description
This function will return the original price as defined on the Google Play Developer Console for
the given SKU (product ID), where the original price is the price of the item before any applicable
sales have been applied. You supply the product ID as a string, and the function will return a
formatted string with the price that includes the currency sign, for example “€3.99”. Note that
this function requires you to have «called GPBilling QueryProducts() or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.

Syntax
GPBilling_Sku_GetOriginalPrice(sku);
Argument Description Data Type
sku The unique SKU ID of the String

product.

Returns
String

Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetOriginalPrice(global.IAP_PurchaseID[@]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

GPBilling_Sku_GetOriginalPriceAmountMicros

Description

This function will return the original price as defined on the Google Play Developer Console for
the given SKU (product ID) in micros, where 1,000,000 micros equals one unit of the currency.
The original price is defined as the price of the item before any applicable sales have been
applied, and the value represents the localized, rounded price for a particular currency. You
supply the product ID as a string, and the function will return an integer value for the price in
micros, for example 7990000 (which would be 7.99 in currency). Note that this function requires
you to have called GPBilling QueryProducts() or GPBilling QuerySubscriptions() first,
but once those have returned their respective Async callbacks, this function can be used
anywhere in your game code to retrieve the required information.

Syntax
GPBilling Sku_GetOriginalPriceAmountMicros(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
Integer
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0@]);
var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);
var _m = GPBilling_ Sku_GetOriginalPriceAmountMicros(global.IAP_PurchaseID[@]);
var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[@]);
var _val = string(_m / 1000000);
var _symbol = “’;
switch (_c)

{

case “GBP”: _symbol = “£”; break;

case “JPY”: _symbol = “¥”; break;

case “EUR”: _symbol = “€”; break;

}

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);
draw_text(x, y + 48, _desc);
draw_text(x, y + 64, _symbol + _val);

GPBilling_Sku_GetPrice

Description
This function will return the current price as defined on the Google Play Developer Console for
the given SKU (product ID). You supply the product ID as a string, and the function will return a
formatted string with the price that includes the currency sign, for example “€3.99”. Note that
this function requires you to have («called GPBilling_QueryProducts or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.

Syntax
GPBilling Sku_GetPrice(sku);
Argument Description Data Type
sku The unique SKU ID of the String

product.

Returns
String

Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);
var _price = GPBilling_Sku_GetPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

GPBilling_Sku_GetPriceAmountMicros

Description

This function will return the current price as defined on the Google Play Developer Console for
the given SKU (product ID) in micros, where 1,000,000 micros equals one unit of the currency,
and the value represents the localized, rounded price for a particular currency. You supply the
product ID as a string, and the function will return an integer value for the price in micros, for
example 7990000 (which would be 7.99 in currency). Note that this function requires you to
have called GPBilling QueryProducts() or GPBilling QuerySubscriptions() first, but
once those have returned their respective Async callbacks, this function can be used anywhere in
your game code to retrieve the required information.

Syntax
GPBilling_Sku_GetPriceAmountMicros(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);
var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);
var _m = GPBilling Sku_GetPriceAmountMicros(global.IAP_PurchaseID[@]);
var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[@]);
var _val = string(_m / 1000000);
var _symbol = “’;
switch (_c)

{

case “GBP”: _symbol = “£”; break;

case “JPY”: _symbol = “¥”; break;

case “EUR”: _symbol = “€”; break;

}
draw_set_halign(fa_center);
draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);
draw_text(x, y + 64, _symbol + _val);

GPBilling_Sku_GetPriceCurrencyCode

Description

This function will return the currency code for the given SKU (product ID). You supply the
product ID as a string, and the function will return a string in 1SO 4217 format, for example
“EUR” would equate the Euro currency. Note that this function requires you to have called
GPBilling QueryProducts() or GPBilling_QuerySubscriptions() first, but once those
have returned their respective Async callbacks, this function can be used anywhere in your game
code to retrieve the required information.

Syntax
GPBilling_Sku_GetPriceCurrencyCode(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);
var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);
var _m = GPBilling_Sku_GetPriceAmountMicros(global.IAP_PurchaseID[0]);
var _c = GPBilling Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[@]);
var _val = string(_m / 1000000);
var _symbol = “7;
switch (_c)

{

case “GBP”: _symbol = “£”; break;

case “JPY”: _symbol = “¥”; break;

case “EUR”: _symbol = “€”; break;

}
draw_set_halign(fa_center);
draw_text(x, y + 32, _name);

https://en.wikipedia.org/wiki/ISO_4217

draw_text(x, y + 48, _desc);
draw_text(x, y + 64, _symbol + _val);

GPBilling_Sku_GetSubscriptionPeriod

Description

This function will return the subscription renewal period as defined on the Google Play
Developer Console for the given SKU (product ID). You supply the product ID as a string, and the
function will return a string in 1ISO 8601 format, for example “P7D” would equate to seven days.
Note that this function requires you to have called GPBilling QueryProducts() or
GPBilling QuerySubscriptions() first, but once those have returned their respective Async
callbacks, this function can be used anywhere in your game code to retrieve the required
information.

IMPORTANT! This function is only valid for subscription IAPs.

Syntax
GPBilling Sku_GetSubscriptionPeriod(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
String
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_ Sku_GetDescription(global.IAP_PurchaseID[0]);

var _period = GPBilling Sku_GetSubscriptionPeriod(global.IAP_PurchaseID[@]);
var _days = string digits(_period);

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, “Renewal Period: “ + _days + “ days”);

https://en.wikipedia.org/wiki/ISO_8601

GPBilling_Sku_GetTitle

Description
This function will return the title of a given SKU (product ID) as defined on the Google Play
Developer Console. You supply the product ID as a string, and the function will return a string
with the product title. Note that this function requires you to have called
GPBilling QueryProducts() or GPBilling_QuerySubscriptions() first, but once those
have returned their respective Async callbacks, this function can be used anywhere in your game
code to retrieve the required information.

Syntax
GPBilling_Sku_GetTitle(sku);
Argument Description Data Type
sku The unique SKU ID of the String

product.

Returns
String

Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling Sku_GetDescription(global.IAP_PurchaseID[0]);
var _price = GPBilling Sku_GetPrice(global.IAP_PurchaseID[@]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

GPBilling_Sku_GetType

Description

This function will return the in-app purchase type of a given SKU (product ID) as defined on the
Google Play Developer Console. You supply the product ID as a string, and the function will
return a constant with the IAP product type (see below). Note that this function requires you to
have called GPBilling QueryProducts() or GPBilling_ QuerySubscriptions() first, but
once those have returned their respective Async callbacks, this function can be used anywhere in
your game code to retrieve the required information.

Syntax
GPBilling Sku_GetType(sku);
Argument Description Data Type
sku The unique SKU ID of the String
product.
Returns
Constant
Constant Actual Description
Value
gpb_purchase_skutype_inapp “inapp” The product is a
consumable IAP
gpb_purchase_skutype_subs “subs” | The product is a
subscription IAP.
Example

The following code would be called in the Draw Event of an object used to display the
information for a given IAP product:

var _name = GPBilling Sku_GetTitle(global.IAP_PurchaseID[@]);

var _desc = GPBilling_ Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

if GPBilling_Sku_GetType(global.IAP_PurchaseID[@]) == gpb_purchase_skutype_subs

{

draw_text(x, y + 80, “Subscription!”);

}

GPBilling_Purchase_GetState

Description

This function can be used to check the current state of a product purchase. You supply the
unique purchase token (as a string), and the function will return one of the constants listed
below to indicate the current state of the purchase.

Syntax

GPBilling Purchase_GetState(purchase_token);

Argument Description Data Type
purchase_token The purchase token for String
the purchase to check.

Returns
Constant
Constant Actual Description
Value
gpb_purchase_state_pending 3002 The purchase is still
pending
gpb_purchase_state_purchased 3001 The purchase has been
completed
gpb_purchase_state_unspecified 3000 The API can’t retrieve
the purchase status for
some reason
gpb_error_unknown -1 There is an unknown
issue with the Billing
API (possible connection
issue)
gpb_error_not_initialised 1 The Billing API has not
initialised correctly.
Example

if GPBilling Purchase_GetState(global.CurrentToken) == gpb_purchase_state_purchased
{

sprite_index = spr_IconConsume;

}

GPBilling_Purchase_GetSignature

Description
This function will return a string containing the signature of the purchase data that was signed

with the private key of the developer. If the function fails, then an empty string “” will be
returned.

Syntax
GPBilling Purchase_GetSignature(purchase_token);
Argument Description Data Type
purchase_token The purchase token for String
the purchase to check.
Returns
String
Example
for (var 1 = @; i < ds_list_size(global.CurrentTokens); ++ij;)
{

var _sig = GPBilling Purchase_GetSignature(global.CurrentTokens[i]);
var _json = GPBilling_ Purchase_GetOriginalJson(global.CurrentTokens[i]);
if GPBilling_Purchase_VerifySignature(_json, _sig)

{

GPBilling_ConsumeProduct(global.CurrentTokens[| i]);

}

GPBilling_Purchase_VerifySignature

Description

This function can be used to verify a purchase before consuming or acknowledging it. You supply
a JSON string plus the unique signature for a purchase. You can retrieve these details using the
GPBilling Purchase GetSignature() and GPBilling Purchase GetOriginalJson() functions, and
the function will return true if the purchase can be verified, or false otherwise.

Warning! This form of verification isn't truly secure because it requires you to bundle
purchase verification logic within your app. This logic becomes compromised if your app
is reverse engineered. Instead we recommend that you create your own server to verify
any product purchases.

Syntax
GPBilling Purchase_VerifySignature(original_ json, signature);
Argument Description Data Type
original_json The original JSON related String
to the purchase being
verified
signature The unique signature used String
to verify the purchase
Returns
Boolean
Example

for (var 1 = @; i < ds_list_size(global.CurrentTokens); ++ij;)
{
var _sig = GPBilling_ Purchase_GetSignature(global.CurrentTokens[i]);
var _json = GPBilling Purchase_GetOriginalJson(global.CurrentTokens[i]);
if GPBilling_ Purchase_VerifySignature(_json, _sig)
{
GPBilling_ConsumeProduct(global.CurrentTokens[| i]);

}

GPBilling_Purchase_GetOriginallson

Description

This function will return the original JSON string related to a purchase. You supply the unique
purchase token (a string) and the function will return a JSON object string that can be decoded
into a DS map using the json_decode() function. This map will contain all the details about the
given purchase. If the function fails, then an empty string “” will be returned.

Syntax
GPBilling_ Purchase_GetOriginalJlson(purchase_token);
Argument Description Data Type
purchase_token The purchase token for String

the purchase to check.

Returns
String

Example

for (var 1 = @; i < ds_list_size(global.CurrentTokens); ++ij;)
{
var _sig = GPBilling Purchase_GetSignature(global.CurrentTokens[i]);
var _json = GPBilling Purchase_GetOriginalJson(global.CurrentTokens[i]);
if GPBilling_Purchase_VerifySignature(_json, _sig)
{
GPBilling_ConsumeProduct(global.CurrentTokens[| i]);

}

Constants

Event Type

gpb_iap_receipt: 12001

gpb_purchase_status: 12002
gpb_product_data_response: 12003
gpb_store_connect: 12005
gpb_store_connect_failed: 12006
gpb_product_consume_response: 12007
gpb_acknowledge_purchase_response: 12008
gpb_subscription_data_response: 12009
gpb_query_purchase_async: 12010

Error Type

gpb_error_unknown: -1

gpb_no_error: 0
gpb_error_not_initialised: 1
gpb_error_no_skus: 2
gpb_error_selected_sku_list_empty: 3

Purchase State
gpb_purchase_state_pending: 13002
gpb_purchase_state_purchased: 13001
gpb_purchase_state_unspecified: 13000

SKU Type

gpb_purchase_skutype_inapp: “inapp”
gpb_purchase_skutype_subs: “subs”

