
Google Play Services Extension

Contents
Extension’s Features 4

Setup 5

Quick Start Guide 6

Signing In/Out 6

Leaderboards 8

Achievements 9

Save Games 11

Screen Recording 12

Functions 13

General Functions [NEW] 13

GooglePlayServices_IsAvailable() 13

GooglePlayServices_StartSignInIntent() 13

GooglePlayServices_IsSignedIn() 13

GooglePlayServices_SignOut() 13

GooglePlayServices_RevokeAccess() 14

GooglePlayServices_GetAccount() 14

Player Functions 15

GooglePlayServices_Player_Current() 15

GooglePlayServices_Player_CurrentID() 15

Achievements Functions 16

GooglePlayServices_Achievements_Show() 16

GooglePlayServices_Achievements_SetSteps(achievementId, steps) 16

GooglePlayServices_Achievements_Increment(achievementId, steps) 16

GooglePlayServices_Achievements_Reveal(achievementId) 17

GooglePlayServices_Achievements_Unlock(achievementId) 17

GooglePlayServices_Achievements_GetStatus(forceReload) 18

Leaderboard Functions 19

GooglePlayServices_Leaderboard_SubmitScore(leaderId, score, scoreTag) 19

GooglePlayServices_Leaderboard_Show(leaderId) 19

GooglePlayServices_Leaderboard_ShowAll() 19

GooglePlayServices_Leaderboard_LoadPlayerCenteredScores(leaderboardId,span,
collection, maxResults, forceReload) 20

GooglePlayServices_Leaderboard_LoadPlayerCenteredScores(leaderboardId,span,
collection, maxResults, forceReload) 20

Save Game Functions 22

GooglePlayServices_SavedGames_ShowSavedGamesUI(title, add, delete, max) 22

GooglePlayServices_SavedGames_Open(name) 22

GooglePlayServices_SavedGames_CommitAndClose(name, desc, data, coverPath) 23

GooglePlayServices_SavedGames_DiscardAndClose(name) 23

GooglePlayServices_SavedGames_CommitNew(name, desc, data, coverPath) 24

GooglePlayServices_SavedGames_Delete(name) 24

GooglePlayServices_SavedGames_Load(forceReload) 25

Screen Recording Functions 26

GooglePlayServices_VideoRecording_ShowVideoOverlay() 26

Utility Functions 27

GooglePlayServices_SetClientID(clientId) 27

GooglePlayServices_GetServerAuthCode() 27

GooglePlayServices_UriToPath(uri) 27

JSON Structs 28

AccountJSON 28

PlayerJSON 28

GameJSON 28

AchievementStatusJSON 29

LeaderboardEntryJSON 29

LeaderboardReportJSON 30

SnapshotMetadataJSON 30

Constants 31

AchievementState 31

AchievementType 31

LeaderboardTimeSpan 31

LeaderboardCollection 31

Extension’s Features
● Sign in and out or Google Play Account
● Revoke login permissions
● Submit and show specific leaderboards
● Show multiple leaderboards
● Handle achievements:

○ Unlock (one-time achievements)
○ Incremental (progress achievements)
○ Reveal (hidden achievements)

● Open save slots
● Submit/Delete save slots
● Query all save slots
● Show GooglePlayUI for saved slots

Setup
The Google Play Services extension is to be used alongside your Google Developer account
(web page). All the required personal leaderboard ids and achievement ids should be managed
from there.

[IMPORTANT] before using this extension make sure to correctly set up your Android
application following the steps on this article. It’s also important to note that this is a
reference demo meaning it cannot be played as is, as it would need our .keystore and
our Google Services ID which cannot be included with the package.

1. As the Google Developer Console layout might change in the future you can check their
official guide on setting up leaderboards: Adding Leaderboards.

2. As the Google Developer Console layout might change in the future you can check their
official guide on setting up achievements: Adding Achievements.

https://developers.google.com/
https://help.yoyogames.com/hc/en-us/articles/360004274212-Google-Play-Services-How-To-Use-This-In-Your-Games
https://developers.google.com/games/services/common/concepts/leaderboards#creating_a_leaderboard
https://developers.google.com/games/services/common/concepts/achievements#creating_an_achievement

Quick Start Guide
This section aims to deliver an easy and simple set of examples that should help you migrate
your project from a previous version of the Google Play Services extension to its updated
version. The first thing to notice is that Google Play Services used to be part of the runtime and
all the included functions were named “achievement_*”; these have been renamed to
“GooglePlayServices_*” and also separated into categories to better organize them and
provide a cleaner look to the code.

Signing In/Out
The first thing to look for when creating a GooglePlayServices GMS project is signing in to a
Google Play account.

[Function Mappings]

Even though not all old functions map perfectly into the new API, the following list should get
you started with some of the changes (check the section below for more details):

● GooglePlayServices_IsSignedIn()⇔ achievement_login_status()
● GooglePlayServices_StartSignInIntent()⇔ achievement_login()

○ triggers the event of type “GooglePlayServices_SignIn” (more details)
● GooglePlayServices_GetAccount() gets information about the current account.
● GooglePlayServices_SignOut()⇔ achievement_logout()

○ triggers the event of type “GooglePlayServices_SignOut” (more details)
● GooglePlayServices_RevokeAccess() revokes the rights to automatically login at

application start.
○ triggers the event of type “GooglePlayServices_RevokeAccess” (more details)

[Old Version]

// In the previous version you would check the achievement status and if not
// signed in, you were required to login.
if (!achievement_login_status()) {

achievement_login();
}

This function would then trigger a callback ASYNC SOCIAL EVENT, where the async_load map
would contain an “id” key with the constant value achievement_our_info and also some
account information under “name” and “playerId”.

[New Version]

// In the new version you can use the following code to check connection and
// connect to the Google Play account.
if (!GooglePlayServices_IsSignedIn()) {

GooglePlayServices_StartSignInIntent();
}

This function will then trigger an ASYNC SOCIAL EVENT callback, where the async_load map
would contain a “type” key with the value “GooglePlayServices_SignIn” and a “success” key
that can have a value of 1 or 0 (depending on whether or not the function was successful).

// After signing in if you need to query account information, you can do so
// by using the method ‘GooglePlayServices_GetAccount’.
var accountInfoJSON = GooglePlayServices_GetAccount();
var accountInfo = json_parse(accountInfoJSON);

The account information after being parsed into a struct contains a lot of details about the
account (see AccountJSON).

Leaderboards
One of the features provided by the Google Play Services API is the creation and interaction
with leaderboards. Leaderboards can be created using the Google Development Console (see
Setup) and you can see and submit values to them during runtime.

[Function Mappings]

Even though not all old functions map perfectly into the new API, the following list should get
you started with some of the changes (check the section below for more details):

● GooglePlayServices_Leaderboard_SubmitScore(...)⇔ achievement_post_score()
○ triggers the event of type “GooglePlayServices_Leaderboard_SubmitScore”

(more details)
● GooglePlayServices_Leaderboard_ShowAll()⇔ achievement_show_leaderboards()
● GooglePlayServices_Leaderboard_Show(...) shows a specific leaderboard.

[Old Version]

// In the previous version you would use the leaderboards as follows.
// To submit a value to a leaderboard you would do:
achievement_post_score(global.leaderboardId, score);

This function would then trigger a callback ASYNC SOCIAL EVENT, where the async_load map
would contain an “id” key with the constant value achievement_post_score_result and some
other keys with information regarding your current post to the leaderboard.

// Then if you wanted to see the leaderboards you could just use the following
// line of code.
achievement_show_leaderboards();

[New Version]

// In the new version you can submit to a leaderboard using the code sample:
GooglePlayServices_Leaderboard_SubmitScore(global.leaderboardId, score, tag);

This function gives the developer the capability of adding an extra description tag to the score
being submitted. This function works asynchronously and triggers an ASYNC SOCIAL EVENT
callback upon completion with submission result information
(GooglePlayServices_Leaderboard_SubmitScore).

// If you need to show the leaderboard to the user you can now do so with the
// help of one of the following two functions:

// Show a single leaderboard
GooglePlayServices_Leaderboard_Show(global.leaderboardId);

// Show all the leaderboards
GooglePlayServices_Leaderboard_ShowAll();

Achievements
One of the features provided by the Google Play Services API is the creation and interaction
with achievements. Achievements can be created using the Google Development Console (see
Setup) and you can see and edit them during runtime.

[Function Mappings]

Even though not all old functions map perfectly into the new API, the following list should get
you started with some of the changes (check the section below for more details):

● GooglePlayServices_Achievements_Show()⇔ achievement_show_achievements()
○ triggers the event of type “GooglePlayServices_Achievement_Show” (more

details)
● GooglePlayServices_Achievements_Increment(...)⇔ achievement_increment(...)

○ triggers the event of type “GooglePlayServices_Achievement_Increment” (more
details)

● GooglePlayServices_Achievements_SetSteps(...)⇔ achievement_post(...)
○ triggers the event of type “GooglePlayServices_Achievement_SetSteps” (more

details)
● GooglePlayServices_Achievements_Reveal(...)⇔ achievement_reveal(...)

○ triggers the event of type “GooglePlayServices_Achievement_Reveal” (more
details)

● GooglePlayServices_Achievements_Unlock(...) unlocks a locked achievement.
○ triggers the event of type “GooglePlayServices_Achievement_Unlock” (more

details)

[Old Version]

In previous versions you could reveal, increment, post and show in-game achievements using
the code sample below:

// After successfully connecting to the Google Play account you could perform
// the following operations:
achievement_reveal(achievementId);
achievement_post(achievementId, percent);

achievement_increment(incrementalAchievementId, amount);
achievement_show_achievements();

The code above would first reveal the achievement to the user (if it was a hidden achievement),
then you could post a value to an achievement this would be a percentage value (0 -

incomplete, 100 - complete) you could also increment the achievement value (if it was an
incremental achievement) and finally you could show the achievements to the user.

[New Version]

The new version has added functionality that allows for unlocking the achievement. This is the
same as setting the completion to 100% (if the achievement is hidden it will be automatically
revealed).

// First of all we need to successfully sign-in to user’s the Google Play
// account and after that:
GooglePlayServices_Achievements_Reveal(achievementId);
GooglePlayServices_Achievements_SetSteps(achievementId, 75);
GooglePlayServices_Achievements_Unlock(achievementId);

GooglePlayServices_Achievements_Increment(incrementalAchievementId, amount);
GooglePlayServices_Achievements_Show();

The migration in the example above is very simple and straightforward. Please take into
consideration that the code above will produce Async Social event callbacks with additional
information regarding task completion (more details).

Save Games
This functionality suffered major changes and as such there is no migration guide for it,
although you can experiment with it using the provided demo sample. This section aims to
deliver a clean explanation of the code layout used for the demo.

NOTE: This new feature will only work if google cloud saving is enabled under: Game Options
→ Android → Social → Enable Google Cloud Saving, otherwise none of the functionality
below will work.

[Objects]

1. Each component used in the sample is represented by an object (stored inside the
folder: GooglePlayServices → Objects → SavedGames)

2. The object Obj_GooglePlayServices_SavedGames is where the majority of ASYNC
SOCIAL EVENT callbacks are handled.

3. Both Obj_GooglePlayServices_DataObj and Obj_GooglePlayServices_Icon are used
as placeholder representations of game data to be saved.

4. The object Obj_GooblePlayServices_Slot represents a saved slot that can be clicked
to enter slot edit mode.

5. The remaining objects inside the folder are buttons that the user can interact with.

[Demo Workflow]

1. When you create a new slot (New Save Slot button) a prompt dialog to name the slot is
displayed. The callback to handle the returned value and creation of the new save slot
(GooglePlayServices_SavedGames_CommitNew) is inside the callback controller object
Obj_GooglePlayServices_SavedGames.

2. After creating the new slot we load (GooglePlayServices_SavedGames_Load) the slot
data from Google Play servers, note that force loading might not be necessary since
the API uses local cache to spare server calls.

3. The newly created slot will now appear on screen. If you click it, we will trigger the
opening (GooglePlayServices_SavedGames_Open) of the slot and enter its edit mode.

4. In the edit mode we can move objects around and tap the icon to change it. After
editing we can discard (GooglePlayServices_SavedGames_DiscardAndClose) or
commit the changes (GooglePlayServices_SavedGames_CommitAndClose); optionally
we can also delete the slot (GooglePlayServices_SavedGames_Delete).

5. After leaving the slot edit mode we can use the button Show Save Slots to call the
Google Play screen overlay (GooglePlayServices_SavedGames_ShowSavedGamesUI)
providing information regarding all the save slots.

Screen Recording
This is a new functionality and as such there is no migration guide for it, although you can
experiment with it using the provided demo sample through the in-game option: Main Menu →
Screen Recording. (GooglePlayServices_VideoRecording_ShowVideoOverlay)

Functions
Some of the provided functions generate Social Async callbacks. In these cases the extension
populates the async_load map with a "type" key that will contain the specific identifier of a
given callback. All GooglePlayServices related callbacks start with “GooglePlayServices_”.

General Functions [NEW]

GooglePlayServices_IsAvailable()
Description: This function returns whether or not the user has GooglePlayServices installed into
their devices. This is required for using any of the extension functions.

Returns: {bool} 1 - is available; 0 - is not available

GooglePlayServices_StartSignInIntent()
Description: This function starts the intent of signing in to the Google Play account. The user is
required to be signed in for all the other Google Play functionality to be usable. The function
itself will not sign-in immediately, instead it will trigger an ASYNC SOCIAL EVENT that can be
listened to in order to check if the sign-in process succeeded.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SignIn"

success: {boolean} whether or not the function request succeeded.

GooglePlayServices_IsSignedIn()
Description: This function returns whether or not the user is currently logged into his/her
Google Play account.

Returns: {bool} 1 - is logged in; 0 - is not logged in

GooglePlayServices_SignOut()
Description: This function will temporarily make the application sign-out of the user’s Google
Play account. It does so “temporarily” because the application automatically signs the user in
on re-opening the app.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SignOut"

success: {boolean} whether or not the function request succeeded.

GooglePlayServices_RevokeAccess()
Description: This function signs the user out and revokes the access to the user’s login.
Revoking means that the application will not automatically login again upon re-opening. The
application will need to call the ‘GooglePlayServices_StartSignInIntent’ again in order for the
login process to be initialised. This event triggers an ASYNC SOCIAL EVENT with a type equal
to its name.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_RevokeAccess"

success: {boolean} whether or not the function request succeeded.

GooglePlayServices_GetAccount()
Description: This function queries the Google Play server for information on the current account
and returns a json formatted string containing account information (see AccountJSON)

Returns: {string} json formatted string that can be passed into the json_parse method.

Player Functions

GooglePlayServices_Player_Current()
Description: This function queries the Google Play server for information on the current
signed-in player. The function will not return any value but it will create a request that will
trigger an ASYNC SOCIAL EVENT callback when it is ready.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Player_Current"

success: {boolean} whether or not the function request succeeded.

player: {PlayerJSON} The information of the player in a json formatted string that can be
passed into the json_parse method.

GooglePlayServices_Player_CurrentID()
Description: This function queries the Google Play server for information on the current player's
unique id. The function will not return any value but it will create a request that will trigger an
ASYNC SOCIAL EVENT callback when it is ready.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Player_CurrentID"

success: {boolean} whether or not the function request succeeded.

playerId: {string} The current player's unique id.

Achievements Functions

GooglePlayServices_Achievements_Show()
Description: This function will call the Google Play Services achievement overlay with all your
achievement information.

Returns: N/A

GooglePlayServices_Achievements_SetSteps(achievementId, steps)
Description: This function requests the Google Play Services API to set the achievement
progress to a given amount of steps. Incremental achievements require a specific amount of
steps before they are set as complete. (see GooglePlayServices_Achievements_SetSteps). The
function will not return any value but it will create a request that will trigger an ASYNC SOCIAL
EVENT callback when it is ready.

Params:

{string} achievementId: the unique identifier of the achievement.

{real} steps: the amount of steps to set to.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Achievements_SetSteps"

success: {boolean} whether or not the function request succeeded.

achievement_id: {string} The unique name of the achievement.

GooglePlayServices_Achievements_Increment(achievementId, steps)
Description: This function requests the Google Play Services API to increment the achievement
progress by a given amount of steps. Incremental achievements require a specific amount of
steps before they are set as complete. (see GooglePlayServices_Achievements_SetSteps). The
function will not return any value but it will create a request that will trigger an ASYNC SOCIAL
EVENT callback when it is ready.

Params:

{string} achievementId: the unique identifier of the achievement.

{real} steps: the amount of steps to increment by.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Achievements_Increment"

success: {boolean} whether or not the function request succeeded.

achievement_id: {string} The unique name of the achievement.

GooglePlayServices_Achievements_Reveal(achievementId)
Description: This function requests the Google Play Services API to change the state of a given
achievement to ‘revealed’ for the currently signed in player. The function will not return any
value but it will create a request that will trigger an ASYNC SOCIAL EVENT callback when it is
ready.

Params:

{string} achievementId: the unique identifier of the achievement.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Achievements_Reveal"

success: {boolean} whether or not the function request succeeded.

achievement_id: {string} The unique name of the achievement.

GooglePlayServices_Achievements_Unlock(achievementId)
Description: This function requests the Google Play Services API to unlock the given
achievement for the currently signed in player. The function will not return any value but it will
create a request that will trigger an ASYNC SOCIAL EVENT callback when it is ready.

Params:

{string} achievementId: the unique identifier of the achievement.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Achievements_Unlock"

success: {boolean} whether or not the function request succeeded.

achievement_id: {string} The unique name of the achievement.

GooglePlayServices_Achievements_GetStatus(forceReload)
Description: This function requests the Google Play Services API to query the status of the
achievements for the current player. The function will not return any value but it will create a
request that will trigger an ASYNC SOCIAL EVENT callback when it is ready.

Params:

{bool} forceReload: should we force reload the achievements status.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Leaderboard_LoadPlayerCenteredScores"

data: {string} A json formatted string of an array of AchievementStatusJSON. This string
can be parsed into an array with the function json_parse.

Leaderboard Functions

GooglePlayServices_Leaderboard_SubmitScore(leaderId, score, scoreTag)
Description: This function requests the Google Play Services API to submit a score to the given
leaderboard. The function will not return any value but it will create a request that will trigger an
ASYNC SOCIAL EVENT callback when it is ready.

Params:

{string} leaderId: the unique identifier of the leaderboard.

{real} score: the value to be submitted to the leaderboard (remember that only the
highest score value is displayed in the leaderboard).

{string} tag: a tag that will be added to the value being submitted to the leaderboard.
(note that this value is required, if you don’t want to set a tag use an empty string).

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Achievements_SubmitScore"

success: {boolean} whether or not the function request succeeded.

leaderboardId: {string} The leaderboard the score was submitted to.

score: {real} The submitted score

scoreTag: {string} The tag for the current submission

report: {LeaderboardReportJSON} The submit information in a json formatted string that
can be passed into the json_parse method.

GooglePlayServices_Leaderboard_Show(leaderId)
Description: This function will call the Google Play Services overlay for a specific leaderboard.

Params:

{string} leaderId: the unique identifier of the leaderboard.

Returns: N/A

GooglePlayServices_Leaderboard_ShowAll()
Description: This function will call the general Google Play Services leaderboards overlay. Here
the user will have access to all the existing leaderboards of the current application.

Returns: N/A

GooglePlayServices_Leaderboard_LoadPlayerCenteredScores(leaderboardId
,span, collection, maxResults, forceReload)
Description: Asynchronously load the player-centered page of scores for a given leaderboard. If
the player does not have a score on this leaderboard, this call will return the first page instead.
The function will not return any value but it will create a request that will trigger an ASYNC
SOCIAL EVENT callback when it is ready.

Params:

{string} leaderId: the unique identifier of the leaderboard.

{LeaderboardTimeSpan} span: Time span to retrieve data for.

{LeaderboardCollection} collection: The leaderboard collection to retrieve scores for.

{real} maxResults: The maximum number of scores to fetch per page. Must be
between 1 and 25.

{bool} forceReload: If true, this call will clear any locally cached data and attempt to
fetch the latest data from the server. This would commonly be used for something like a
user-initiated refresh. Normally, this should be set to false to gain advantages of data
caching.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Leaderboard_LoadPlayerCenteredScores"

data: {string} A json formatted string of an array of LeaderboardEntryJSON. This string
can be parsed into an array with the function json_parse.

GooglePlayServices_Leaderboard_LoadTopScores(leaderboardId,span,
collection, maxResults, forceReload)
Description: Asynchronously load the top page of scores for a given leaderboard. The function
will not return any value but it will create a request that will trigger an ASYNC SOCIAL EVENT
callback when it is ready.

Params:

{string} leaderId: the unique identifier of the leaderboard.

{LeaderboardTimeSpan} span: Time span to retrieve data for.

{LeaderboardCollection} collection: The leaderboard collection to retrieve scores for.

{real} maxResults: The maximum number of scores to fetch per page. Must be
between 1 and 25.

{bool} forceReload: If true, this call will clear any locally cached data and attempt to
fetch the latest data from the server. This would commonly be used for something like a
user-initiated refresh. Normally, this should be set to false to gain advantages of data
caching.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_Leaderboard_LoadTopScores"

data: {string} A json formatted string of an array of LeaderboardEntryJSON. This string
can be parsed into an array with the function json_parse.

Save Game Functions
These functions require Google Cloud saving permissions and will only work if the option is
enabled under: Game Options → Android → Social → Enable Google Cloud Saving,
otherwise none of the functionality below will work.

GooglePlayServices_SavedGames_ShowSavedGamesUI(title, add, delete, max)

Description: This function requests Google Play Services API to open the saved games UI
overlay, giving you the ability to see, add (optional) and delete (optional) the save slots.

Params:

{string} title: The text to be used as the title of the overlay.

{boolean} add: Whether or not the ‘Add’ slot button should be displayed.

{boolean} delete: Whether or not the ‘Delete’ slot button should be displayed.

{real} max: Sets the maximum amount of slots allowed. This can be useful to limit the
number of saves you want the player to be able to create.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

<selecting a slot>

type: "GooglePlayServices_SavedGames_ShowSavedGamesUI_OnOpen"

snapshotMetadata: (json formatted string - SnapshotMetadataJSON)

<creating a new slot>

type: "GooglePlayServices_SavedGames_ShowSavedGamesUI_OnNew"

<closing the overlay>

type: "GooglePlayServices_SavedGames_ShowSavedGamesUI_OnClose"

GooglePlayServices_SavedGames_Open(name)
Description: This function requests the Google Play Services API to open a given save slot
given its unique name identifier. The function will not return any value but it will create a request
that will trigger an ASYNC SOCIAL EVENT callback when it is ready.

Params:

{string} name: the unique identifier of the save game slot.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SavedGames_Open"

success: {boolean} whether or not the function request succeeded.

snapshotMetadata: {SnapshotMetadataJSON} a json formatted string of the snapshot
metadata that can be parsed using json_parse.

data: (the string previously saved to the Google Play Services)

GooglePlayServices_SavedGames_CommitAndClose(name, desc, data,
coverPath)
Description: This function requests the Google Play Services API to commit data to a given
save slot. The unique identifier of the slot needs to exist meaning that this function will only
update already existing files (see GooglePlayServices_SavedGames_CommitNew for creating
new ones) but the ‘description’, ‘data’ and ‘coverPath’ can be changed if needed. This function
will not return any value but it will create a request that will trigger an ASYNC SOCIAL EVENT
callback when it is ready.

Params:

{string} name: the unique identifier of the save game slot.

{string} description: the description of the current save slot.

{string} data: a string containing the data you want to save (note you can use json
formatted string to store data).

{string} coverPath: a string with the path to the image to be used as a save slot cover
image.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SavedGames_CommitAndClose"

success: {boolean} whether or not the function request succeeded.

GooglePlayServices_SavedGames_DiscardAndClose(name)
Description: This function requests the Google Play Services API to discard changes and close
the currently opened save slot.

Params:

{string} name: the unique identifier of the save game slot.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SavedGames_DiscardAndClose"

success: {boolean} whether or not the function request succeeded.

GooglePlayServices_SavedGames_CommitNew(name, desc, data, coverPath)
Description: This function requests the Google Play Services API to commit data to a given
save slot. This function will create a new slot, if you want to update an already existing slot use
the GooglePlayServices_SavedGames_CommitAndClose function. This function will not return
any value but it will create a request that will trigger an ASYNC SOCIAL EVENT callback when
it is ready.

Params:

{string} name: the unique identifier of the save game slot.

{string} description: the description of the current save slot.

{string} data: a string containing the data you want to save (note you can use json
formatted string to store data).

{string} coverPath: a string with the path to the image to be used as a save slot cover
image.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SavedGames_CommitNew"

success: {boolean} whether or not the function request succeeded.

snapshotMetadata: {SnapshotMetadataJSON} a json formatted string of the snapshot
metadata that can be parsed using json_parse.

GooglePlayServices_SavedGames_Delete(name)
Description: This function requests the Google Play Services API to delete a given save slot
given its unique identifier. The function will not return any value but it will create a request that
will trigger an ASYNC SOCIAL EVENT callback when it is ready.

Params:

{string} name: the unique identifier of the save game slot.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SavedGames_Delete"

success: {boolean} whether or not the function request succeeded.

GooglePlayServices_SavedGames_Load(forceReload)
Description: This function requests the Google Play Services API to query all the save slot
metadata of the currently signed-in user. The function will not return any value but it will create
a request that will trigger an ASYNC SOCIAL EVENT callback when it is ready.

Params:

{boolean} forceReload: Whether or not the current local cache should be cleared and a
new fetch should be performed from the server.

Returns: N/A

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_SavedGames_Load"

success: {boolean} whether or not the function request succeeded.

snapshots: {SnapshotMetadataJSON[]} a json formatted string of an array with all the
existing snapshots metadata that can be parsed using json_parse.

Screen Recording Functions

GooglePlayServices_VideoRecording_ShowVideoOverlay()
Description: This method will enable the video recording screen overlay. With this feature the
user will be able to record their screen and save the recordings to their phone’s memory. Front
camera and microphone can also be recorded.

Returns: N/A

Utility Functions

GooglePlayServices_SetClientID(clientId)
Description: This function should be called before signing in, and is useful for Google/Firebase
authentication, should it be needed.

Params:

{string} clientId: The unique client id string to be used.

Returns: N/A

GooglePlayServices_GetServerAuthCode()
Description: This function returns the server AuthCode, useful for authentication.

Returns: {string}

GooglePlayServices_UriToPath(uri)
Description: Some of the function callbacks above return a URI (unique resource identifier).
However if the user needs to open these same files it is necessary to convert these URIs into
paths. This function requests the Google Play Services API for the path to a given URI. The
function will not return the path immediately but instead will return a request id and will trigger
an ASYNC SOCIAL EVENT callback when it is ready.

Params:

{string} uri: The uri to get the path from.

Returns: {real} The id of the request.

Triggers: ASYNC SOCIAL EVENT

type: "GooglePlayServices_UriToPath"

success: {boolean} whether or not the function request succeeded.

ind: {real} the id of the request this callback refers to.

path: {string} the path to the resource.

JSON Structs

AccountJSON
→ displayName
→ email
→ familyName
→ givenName
→ IdToken
→ photoUrl
→ serverAuthCode

PlayerJSON
→ bannerImageLandscapeUri
→ bannerImagePortraitUri
→ displayName
→ hiResImageUri
→ iconImageUri
→ lastPlayedWithTimestamp
→ currentXpTotal
→ lastLevelUpTimestamp
→ currentLevelNumber
→ currentMaxXp
→ currentMinXp
→ nextLevelNumber
→ nextMaxXp
→ nextMinXp
→ playerId
→ retrievedTimestamp
→ title
→ hasHiResImage
→ hasIconImage

GameJSON
→ areSnapshotsEnabled
→ achievementTotalCount
→ applicationId
→ description
→ developerName
→ displayName

→ featuredImageUri
→ hiResImageUri
→ iconImageUri
→ leaderboardCount
→ primaryCategory
→ secondaryCategory
→ themeColor
→ gamepadSupport

AchievementStatusJSON
→ id: {string} The ID of this achievement.
→ description: {string} The description for this achievement.
→ lastUpdatedTimestamp: {int64} The timestamp (in milliseconds since epoch) at which this

achievement was last updated.
→ name: {string} The achievement name.
→ revealedImage: {string} A URI that can be used to load the achievement's revealed image icon.
→ state: {real} The AchievementState of the achievement.
→ typeAchievement: {real} The AchievementType of this achievement.
→ unlockedImage: {string} A URI that can be used to load the achievement's unlocked image icon.
→ xpValue: {real} The XP value of this achievement.
→ currentSteps: {real} The number of steps this user has gone toward unlocking this achievement

(only for Achievement_TYPE_INCREMENTAL)
→ formattedCurrentSteps: {string} The number of steps this user has gone toward unlocking this

achievement (formatted as string, only for Achievement_TYPE_INCREMENTAL)
→ formattedTotalSteps: {string} The total number of steps necessary to unlock this achievement

(formatted as string, only for Achievement_TYPE_INCREMENTAL)
→ totalSteps: {real} The total number of steps necessary to unlock this achievement (only for

Achievement_TYPE_INCREMENTAL)

LeaderboardEntryJSON
→ displayRank: {string} A formatted string to display for this rank.
→ displayScore: {string} A formatted string to display for this score.
→ rank: {real} The rank returned from the server for this score.
→ rawScore: {real} The raw score value.
→ scoreHolder: {PlayerJSON} The player that scored this particular score.
→ scoreHolderDisplayName: {string} The name to display for the player who scored this score.
→ scoreHolderHiResImageUri: {string} the URI of the hi-res image to display for the player who

scored this score.
→ scoreHolderIconImageUri: {string} the URI of the icon image to display for the player who

scored this score.
→ scoreTag: {string} The optional score tag associated with this score, if any. (OPTIONAL)

→ timestampMillis: {int64} The timestamp (in milliseconds from epoch) at which this score was
achieved.

LeaderboardReportJSON
→ daily:

→ score
→ scoreTag
→ isNewBest

→ weekly:
→ score
→ scoreTag
→ isNewBest

→ allTime:
→ score
→ scoreTag
→ isNewBest

SnapshotMetadataJSON
→ coverImageAspectRatio
→ coverImageUri
→ description
→ deviceName
→ game (GameJSON)
→ lastModifiedTimestamp
→ owner (PlayerJSON)
→ playedTime
→ progressValue
→ uniqueName
→ hasChangePending

Constants

AchievementState
→ Achievement_STATE_HIDDEN
→ Achievement_STATE_REVEALED
→ Achievement_STATE_UNLOCKED

AchievementType
→ Achievement_TYPE_INCREMENTAL
→ Achievement_TYPE_STANDARD

LeaderboardTimeSpan
→ Leaderboard_TIME_SPAN_DAILY
→ Leaderboard_TIME_SPAN_WEEKLY
→ Leaderboard_TIME_SPAN_ALL_TIME

LeaderboardCollection
→ Leaderboard_COLLECTION_PUBLIC
→ Leaderboard_COLLECTION_SOCIAL

